Cristina D'Arrigo
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristina D'Arrigo.
Journal of Neurochemistry | 2002
Claudio Russo; Elisabetta Violani; Serena Salis; Valentina Venezia; Gianluca Damonte; Umberto Benatti; Cristina D'Arrigo; Eligio Patrone; Pia Carlo; Gennaro Schettini
N‐terminally truncated amyloid‐β (Aβ) peptides are present in early and diffuse plaques of individuals with Alzheimers disease (AD), are overproduced in early onset familial AD and their amount seems to be directly correlated to the severity and the progression of the disease in AD and Downs syndrome (DS). The pyroglutamate‐containing isoforms at position 3 [AβN3(pE)−40/42] represent the prominent form among the N‐truncated species, and may account for more than 50% of Aβ accumulated in plaques. In this study, we compared the toxic properties, fibrillogenic capabilities, and in vitro degradation profile of Aβ1–40, Aβ1–42, AβN3(pE)−40 and AβN3(pE)−42. Our data show that fibre morphology of Aβ peptides is greatly influenced by the C‐terminus while toxicity, interaction with cell membranes and degradation are influenced by the N‐terminus. AβN3(pE)−40 induced significantly more cell loss than the other species both in neuronal and glial cell cultures. Aggregated AβN3(pE) peptides were heavily distributed on plasma membrane and within the cytoplasm of treated cells. AβN3(pE)−40/42 peptides showed a significant resistance to degradation by cultured astrocytes, while full‐length peptides resulted partially degraded. These findings suggest that formation of N‐terminally modified peptides may enhance β‐amyloid aggregation and toxicity, likely worsening the onset and progression of the disease.
Biopolymers | 2009
Cristina D'Arrigo; Massimo Tabaton; Angelo Perico
We tested directly the differences in the aggregation kinetics of three important β amyloid peptides, the full‐length Aβ1‐42, and the two N‐terminal truncated and pyroglutamil modified Aβpy3‐42 and Aβpy11‐42 found in different relative concentrations in the brains in normal aging and in Alzheimer disease. By following the circular dichroism signal and the ThT fluorescence of the solution in phosphate buffer, we found substantially faster aggregation kinetics for Aβpy3‐42. This behavior is due to the particular sequence of this peptide, which is also responsible for the specific oligomeric aggregation states, found by TEM, during the fibrillization process, which are very different from those of Aβ1‐42, more prone to fibril formation. In addition, Aβpy3‐42 is found here to have an inhibitory effect on Aβ1‐42 fibrillogenesis, coherently with its known greater infective power. This is an indication of the important role of this peptide in the aggregation process of β‐peptides in Alzheimer disease.
Journal of Cellular Biochemistry | 2003
Paola Barboro; Cristina D'Arrigo; Michele Mormino; Rosella Coradeghini; Silvio Parodi; Eligio Patrone; Cecilia Balbi
Recent ultrastructural, immunoelectron, and confocal microscopy observations done in our laboratory [Barboro et al. [2002] Exp. Cell. Res. 279:202–218] have confirmed that lamins and the nuclear mitotic apparatus protein (NuMA) are localized inside the interphase nucleus in a polymerized form. This provided evidence of the existence of a RNA stabilized lamin/NuMA frame, consisting of a web of thin (∼3 and ∼5 nm) lamin filaments to which NuMA is anchored mainly in the form of discrete islands, which might correspond to the minilattices described by Harborth et al. [1999] (EMBO. J. 18:1689–1700). In this article we propose that this scaffold is involved in the compartmentalization of both chromatin and functional domains and further determines the higher‐order nuclear organization. This hypothesis is strongly supported by the scrutiny of different structural transitions which occur inside the nucleus, such as chromatin displacement and rearrangements, the collapse of the internal nuclear matrix after RNA digestion and the disruption of chromosome territories induced by RNase A and high salt treatment. All of these destructive events directly depend on the loss of the stabilizing effect exerted on the different levels of structural organization by the interaction of RNA with lamins and/or NuMA. Therefore, the integrity of nuclear RNA must be safeguarded as far as possible to isolate the matrix in the native form. This material will allow for the first time the unambiguous ultrastructural localization inside the INM of the components of the functional domains, so opening new avenues of investigation on the mechanisms of gene expression in eukaryotes.
Cell Cycle | 2008
Raffaella c Ponassi; Barbara Biasotti; Valeria Tomati; Silvia Bruno; Alessandro Poggi; Davide Malacarne; Guido Cimoli; Annalisa Salis; Sarah Pozzi; Maurizio Miglino; Gianluca Damonte; Pietro Cozzini; Francesca Spyrakis; Barbara Campanini; Luca Bagnasco; Nicoletta Castagnino; Lorenzo Tortolina; Anna Mumot; Francesco Frassoni; Antonio Daga; Michele Cilli; Federica Piccardi; Ilaria Monfardini; Miriam Perugini; Gabriele Zoppoli; Cristina D'Arrigo; Raffaele Pesenti; Silvio Parodi
BH3-only members of the Bcl-2 family exert a fundamental role in apoptosis induction. This work focuses on the development of a novel peptidic molecule based on the BH3 domain of Bim. The antiapoptotic molecule Bcl-XL, involved in cancer development/progression and tumour resistance to cytotoxic drugs, is a target for Bim. According to a rational study of the structural interactions between wt Bim-BH3 and Bcl-XL, we replaced specific residues of Bim-BH3 with natural and non-natural aminoacids and added an internalizing sequence, thus increasing dramatically the inhibitory activity of our modified Bim-BH3 peptide, called 072RB. Confocal microscopy and flow cytometry demonstrated cellular uptake and internalization of 072RB, followed by co-localization with mitochondria. Multiparameter flow cytometry demonstrated that the 072RB dose-dependent growth inhibition of leukaemia cell lines was due to apoptotic cell death. No effect was observed when cells were treated with the internalizing vector alone or a mutated control peptide (single aminoacid substitution L94A). Ex-vivo derived leukemic cells from acute myeloid leukaemia (AML) patients underwent cell death when cultured in vitro in the presence of 072RB. Conversely, no significant cytotoxic effect was observed when 072RB was administered to cultures of peripheral blood mononuclear cells, either resting or PHA-stimulated, and bone marrow cells of normal donors. Xenografts of human AML cells in NOD/SCID mice displayed a significant delay of leukemic cell growth upon treatment with 072RB administered intravenously (15 mg/Kg three times, 48 hours after tumour cell injection). Altogether, these observations support the therapeutic potentials of this novel BH3 mimetic.
The International Journal of Biochemistry & Cell Biology | 2012
Denise Galante; Alessandro Corsaro; Tullio Florio; Serena Vella; Aldo Pagano; Francesca Sbrana; Massimo Vassalli; Angelo Perico; Cristina D'Arrigo
Among the different species of water-soluble β-peptides (Aβ1-42, Aβ1-40 and N-terminal truncated Aβ-peptides), Aβpy3-42 is thought to play a relevant role in Alzheimers pathogenesis due to its abundance, resistance to proteolysis, fast aggregation kinetics, dynamic structure and high neurotoxicity. To evaluate the specific structural characteristics and neurotoxicity of Aβpy3-42, we separated different aggregation states of Aβ1-42 and Aβpy3-42 using fast protein liquid chromatography, isolating in both cases three peaks that corresponded to sa (small), ma (medium) and la (large) aggregates. Conformational analysis, by circular dichroism showed a prevailing random coil conformation for sa and ma, and typical β-sheet conformation for la. AFM and TEM show differential structural features between the three aggregates of a given β-peptide and among the aggregate of the two β-peptides. The potential toxic effects of the different aggregates were evaluated using human neuroblastoma SH-SY5Y cells in the MTT reduction, in the xCELLigence System, and in the Annexin V binding experiments. In the case of Aβ1-42 the most toxic aggregate is la, while in the case of Aβpy3-42 both sa and la are equally toxic. Aβ aggregates were found to be internalized in the cells, as estimated by confocal immunofluorescence microscopy, with a higher effect observed for Aβpy3-42, showing a good correlation with the toxic effects. Together these experiments allowed the discrimination of the intermediate states more responsible of oligomer toxicity, providing new insights on the correlation between the aggregation process and the toxicity and confirming the peculiar role in the pathogenesis of Alzheimer disease of Aβpy3-42 peptide.
Experimental Cell Research | 2009
Paola Barboro; Cristina D'Arrigo; Erica Repaci; Luca Bagnasco; Paola Orecchia; Barbara Carnemolla; Eligio Patrone; Cecilia Balbi
Tumor progression is characterized by definite changes in the protein composition of the nuclear matrix (NM). The interactions of chromatin with the NM occur via specific DNA sequences called MARs (matrix attachment regions). In the present study, we applied a proteomic approach along with a Southwestern assay to detect both differentially expressed and MAR-binding NM proteins, in persistent hepatocyte nodules (PHN) in respect with normal hepatocytes (NH). In PHN, the NM undergoes changes both in morphology and in protein composition. We detected over 500 protein spots in each two dimensional map and 44 spots were identified. Twenty-three proteins were differentially expressed; among these, 15 spots were under-expressed and 8 spots were over-expressed in PHN compared to NH. These changes were synchronous with several modifications in both NM morphology and the ability of NM proteins to bind nuclear RNA and/or DNA containing MARs sequences. In PHN, we observed a general decrease in the expression of the basic proteins that bound nuclear RNA and the over-expression of two species of Mw 135 kDa and 81 kDa and pI 6.7-7.0 and 6.2-7.4, respectively, which exclusively bind to MARs. These results suggest that the deregulated expression of these species might be related to large-scale chromatin reorganization observed in the process of carcinogenesis by modulating the interaction between MARs and the scaffold structure.
Journal of Physical Chemistry B | 2008
Simone Pietronave; Luca Arcesi; Cristina D'Arrigo; Angelo Perico
The interaction free energy of like-charged polyelectrolytes in solution is calculated in the framework of the extended counterion condensation theory, recently given by Schurr and Fujimoto, Biophys. Chem. 2002, 101-102, 425-445. For sufficiently high linear charge density, the electrostatic free energy of two parallel identical rigid polyelectrolytes as a function of the distance between them shows a minimum at distances in the range of nanometers, increasing with the Debye screening length. This effect is due to the increasing of the counterion condensed charge and condensation volume as the two polyelectyrolytes approach.
Molecular Cancer Therapeutics | 2007
Roberta Venè; Giuseppe Arena; Alessandro Poggi; Cristina D'Arrigo; Michele Mormino; Douglas M. Noonan; Adriana Albini; Francesca Tosetti
We previously reported that N-(4-hydroxyphenyl)retinamide (4HPR) inhibits retinoblastoma tumor growth in a murine model in vivo and kills Y79 retinoblastoma cells in vitro. In this work, we assayed different cell death–related parameters, including mitochondrial damage and caspase activation, in Y79 cells exposed to 4HPR. 4HPR induced cytochrome c release from mitochondria, caspase-3 activation, and oligonucleosomal DNA fragmentation. However, pharmacologic inactivation of caspases by the pan-caspase inhibitor BOC-D-fmk, or specific caspase-3 inhibition by Z-DEVD-fmk, was not sufficient to prevent cell death, as assessed by loss of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction, lactate dehydrogenase release, disruption of mitochondrial transmembrane potential (Δψm), and ATP depletion. We found that 4HPR causes lysosomal membrane permeabilization and cytosolic relocation of cathepsin D. Pepstatin A partially rescued cell viability and reduced DNA fragmentation and cytosolic cytochrome c. The antioxidant N-acetylcysteine attenuated cathepsin D relocation into the cytosol, suggesting that lysosomal destabilization is dependent on elevation of reactive oxygen species and precedes mitochondrial dysfunction. Activation of AKT, which regulates energy level in the cell, by the retinal survival facto]r insulin-like growth factor I was impaired and insulin-like growth factor I was ineffective against ATP and Δψm loss in the presence of 4HPR. Lysosomal destabilization, associated with mitochondrial dysfunction, was induced by 4HPR also in other cancer cell lines, including PC3 prostate adenocarcinoma and the vascular tumor Kaposi sarcoma KS-Imm cells. The novel finding of a lysosome-mediated cell death pathway activated by 4HPR could have implications at clinical level for the development of combination chemoprevention and therapy of cancer. [Mol Cancer Ther 2007;6(1):286–98]
International Journal of Molecular Sciences | 2013
Fiammetta Monacelli; Daniela Storace; Cristina D'Arrigo; Roberta Borghi; Davide Pacini; Anna L. Furfaro; Maria Adelaide Pronzato; Patrizio Odetti; Nicola Traverso
The aim of this work was to evaluate the ability of oxidative and glycative stressors to modify properties of human serum albumin (HSA) by analyzing markers of glycation (pentosidine) and oxidation (advanced oxidative protein products (AOPPs)) and assessing fluorescence and circular dichroism. HSA was incubated for up to 21 days with ribose, ascorbic acid (AA) and diethylenetriamine pentacetate (DTPA) in various combinations in order to evaluate influences of these substances on the structure of HSA. Ribose was included as a strong glycative molecule, AA as a modulator of oxidative stress, and DTPA as an inhibitor of metal-catalyzed oxidation. Ribose induced a significant increase in pentosidine levels. AA and DTPA prevented the accumulation of pentosidine, especially at later time points. Ribose induced a mild increase in AOPP formation, while AA was a strong inducer of AOPP formation. Ribose, in combination with AA, further increased the formation of AOPP. DTPA prevented the AA-induced generation of AOPP. Ribose was also a potent inducer of fluorescence at 335nm ex/385nm em, which is typical of pentosidine. AA and DTPA prevented this fluorescence. Circular dichroism showed complex results, in which AA and DTPA were strong modifiers of the percentages of the alpha-helical structure of HSA, while ribose affected the structure of HSA only at later time points.
Experimental Cell Research | 2010
Paola Barboro; Cristina D'Arrigo; Erica Repaci; Eligio Patrone; Cecilia Balbi
Nuclear lamins are among the more abundant proteins making up the internal nuclear matrix, but very little is known about their structure in the nucleoplasm. Using immunoelectron microscopy, we demonstrate the organization of lamins in the nuclear matrix isolated from rat hepatocytes for the first time. Lamin epitopes are arrayed both in locally ordered clusters and in quasi-regular rows. Fourier filtering of the images demonstrates that the epitopes are placed at the nodes and halfway between the nodes of square or rhombic lattices that are about 50 nm on each side, as well as along rows at regular approximately 25-nm intervals. In addition, we have compared this structure with that of the internal nuclear matrix isolated from persistent hepatocyte nodules. In transformed hepatocytes, the islands of lamin lattice are lost, and only a partial regularity in the rows of gold particles remains. We suggest that orthogonal lattice assembly might be an intrinsic property of lamin molecules, and that the disassembly may be triggered by simple molecular events such as phosphorylation.