Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Hemilse Mandrini is active.

Publication


Featured researches published by Cristina Hemilse Mandrini.


Astronomy and Astrophysics | 2002

What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978

P. Démoulin; Cristina Hemilse Mandrini; L. van Driel-Gesztelyi; B. J. Thompson; Simon P. Plunkett; Zs Kovári; G. Aulanier; A. Young

An isolated active region (AR) was observed on the Sun during seven rotations, starting from its birth in July 1996 to its full dispersion in December 1996. We analyse the long-term budget of the AR relative magnetic helicity. Firstly, we calculate the helicity injected by differential rotation at the photospheric level using MDI/SoHO magnetograms. Secondly, we compute the coronal magnetic field and its helicity selecting the model which best fits the soft X-ray loops observed with SXT/Yohkoh. Finally, we identify all the coronal mass ejections (CMEs) that originated from the AR during its lifetime using LASCO and EIT/SoHO. Assuming a one to one correspondence between CMEs and magnetic clouds, we estimate the magnetic helicity which could be shed via CMEs. We find that differential rotation can neither provide the required magnetic helicity to the coronal field (at least a factor 2.5 to 4 larger), nor to the field ejected to the interplanetary space (a factor 4 to 20 larger), even in the case of this AR for which the total helicity injected by differential rotation is close to the maximum possible value. However, the total helicity ejected is equivalent to that of a twisted flux tube having the same magnetic flux as the studied AR and a number of turns in the interval [0.5, 2.0]. We suggest that the main source of helicity is the inherent twist of the magnetic flux tube forming the active region. This magnetic helicity is transferred to the corona either by the continuous emergence of the flux tube for several solar rotations (i.e. on a time scale much longer than the classical emergence phase), or by torsional Alfven waves.


The Astrophysical Journal | 2000

MAGNETIC FIELD AND PLASMA SCALING LAWS: THEIR IMPLICATIONS FOR CORONAL HEATING MODELS

Cristina Hemilse Mandrini; P. Démoulin; James A. Klimchuk

In order to test different models of coronal heating, we have investigated how the magnetic field strength of coronal flux tubes depends on the end-to-end length of the tube. Using photospheric magnetograms from both observed and idealized active regions, we computed potential, linear force-free, and magnetostatic extrapolation models. For each model, we then determined the average coronal field strength, B, in approximately 1000 individual flux tubes with regularly spaced footpoints. Scatter plots of B versus length, L, are characterized by a flat section for small L and a steeply declining section for large L. They are well described by a function of the form log = C1 + C2 log L + C3/2 log(L2 + S2), where C2 ≈ 0, -3 ≤ C3 ≤ -1, and 40 ≤ S ≤ 240 Mm is related to the characteristic size of the active region. There is a tendency for the magnitude of C3 to decrease as the magnetic complexity of the region increases. The average magnetic energy in a flux tube, B2, exhibits a similar behavior, with only C3 being significantly different. For flux tubes of intermediate length, 50 ≤ L ≤ 300 Mm, corresponding to the soft X-ray loops in a study by Klimchuk & Porter (1995), we find a universal scaling law of the form Lδ, where δ = -0.88 ± 0.3. By combining this with the Klimchuk & Porter result that the heating rate scales as L-2, we can test different models of coronal heating. We find that models involving the gradual stressing of the magnetic field, by slow footpoint motions, are in generally better agreement with the observational constraints than are wave heating models. We conclude, however, that the theoretical models must be more fully developed and the observational uncertainties must be reduced before any definitive statements about specific heating mechanisms can be made.


Astronomy and Astrophysics | 2006

A new model-independent method to compute magnetic helicity in magnetic clouds

S. Dasso; Cristina Hemilse Mandrini; P. Démoulin; Maria L. Luoni

Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Instituto de Astronomia y Fisica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomia y Fisica del Espacio; Argentina


Astronomy and Astrophysics | 2005

Interplanetary flux rope ejected from an X-ray bright point - The smallest magnetic cloud source-region ever observed

Cristina Hemilse Mandrini; Silja Pohjolainen; S. Dasso; Lucie Green; P. Démoulin; L. van Driel-Gesztelyi; C. M. Copperwheat; C. Foley

Using multi-instrument and multi-wavelength observations (SOHO/MDI and EIT, TRACE and Yohkoh/SXT), as well as computing the coronal magnetic field of a tiny bipole combined with modelling of Wind in situ data, we provide evidences for the smallest event ever observed which links a sigmoid eruption to an interplanetary magnetic cloud (MC). The tiny bipole, which was observed very close to the solar disc centre, had a factor one hundred less flux than a classical active region (AR). In the corona it had a sigmoidal structure, observed mainly in EUV, and we found a very high level of non- potentiality in the modelled magnetic field, 10 times higher than we have ever found in any AR. From May 11, 1998, and until its disappearance, the sigmoid underwent three intense impulsive events. The largest of these events had extended EUV dimmings and a cusp. The Wind spacecraft detected 4.5 days later one of the smallest MC ever identified (about a factor one hundred times less magnetic flux in the axial component than that of an average MC). The link between this last eruption and the interplanetary magnetic cloud is supported by several pieces of evidence: good timing, same coronal loop and MC orientation, same magnetic field direction and magnetic helicity sign in the coronal loops and in the MC. We further quantify this link by estimating the magnetic flux (measured in the dimming regions and in the MC) and the magnetic helicity (pre- to post-event change in the solar corona and helicity content of the MC). Within the uncertainties, both magnetic fluxes and helicities are in reasonable agreement, which brings further evidences of their link. These observations show that the ejections of tiny magnetic flux ropes are indeed possible and put new constraints on CME models.


The Astrophysical Journal | 2004

Observational Consequences of a Magnetic Flux Rope Emerging into the Corona

Sarah E. Gibson; Yuhong Fan; Cristina Hemilse Mandrini; George H. Fisher; P. Démoulin

We show that a numerical simulation of a magnetic flux rope emerging into a coronal magnetic field predicts solar structures and dynamics consistent with observations. We first consider the structure, evolution, and relative location and orientation of S-shaped, or sigmoid, active regions and filaments. The basic assumptions are that (1) X-ray sigmoids appear at the regions of the flux rope known as ‘‘bald-patch‐associated separatrix surfaces (BPSSs), where, under dynamic forcing, current sheets can form, leading to reconnection and localized heating, and that (2) filaments are regions of enhanced density contained within dips in the magnetic flux rope. We demonstrate that the shapes and relative orientations and locations of the BPSS and dipped field are consistent with observations of X-ray sigmoids and their associated filaments. Moreover, we show that current layers indeed form along the sigmoidal BPSS as the flux rope is driven by the kink instability. Finally, we consider how apparent horizontal motions of magnetic elements at the photosphere caused by the emerging flux rope might be interpreted. In particular, we show that local correlation tracking analysis of a time series of magnetograms for our simulation leads to an underestimate of the amount of magnetic helicity transported into the corona by the flux rope, largely because of undetectable twisting motions along the magnetic flux surfaces. Observations of rotating sunspots may provide better information about such rotational motions, and we show that if we consider the separated flux rope legs as proxies for fully formed sunspots, the amount of rotation that would be observed before the region becomes kink unstable would be in the range 40 � ‐200 � per leg/sunspot, consistent with observations.


The Astrophysical Journal | 2008

Outflows at the Edges of Active Regions: Contribution to Solar Wind Formation?

L. K. Harra; Taro Sakao; Cristina Hemilse Mandrini; Hirohisa Hara; Shinsuke Imada; Peter R. Young; L. van Driel-Gesztelyi; D. Baker

The formation of the slow solar wind has been debated for many years. In this Letter we show evidence of persistent outflow at the edges of an active region as measured by the EUV Imaging Spectrometer on board Hinode. The Doppler velocity ranged between 20 and 50 km s−1 and was consistent with a steady flow seen in the X-Ray Telescope. The latter showed steady, pulsing outflowing material and some transverse motions of the loops. We analyze the magnetic field around the active region and produce a coronal magnetic field model. We determine from the latter that the outflow speeds adjusted for line-of-sight effects can reach over 100 km s−1. We can interpret this outflow as expansion of loops that lie over the active region, which may either reconnect with neighboring large-scale loops or are likely to open to the interplanetary space. This material constitutes at least part of the slow solar wind.


The Astrophysical Journal | 2002

The Structure and Evolution of a Sigmoidal Active Region

Sarah E. Gibson; Lyndsay Fletcher; G. Del Zanna; C. D. Pike; H. E. Mason; Cristina Hemilse Mandrini; P. Démoulin; Holly R. Gilbert; Joan T. Burkepile; Thomas E. Holzer; D. M. Alexander; Yang Liu; Nariaki V. Nitta; Jiong Qiu; B. Schmieder; B. J. Thompson

Solar coronal sigmoidal active regions have been shown to be precursors to some coronal mass ejections. Sigmoids, or S-shaped structures, may be indicators of twisted or helical magnetic structures, having an increased likelihood of eruption. We present here an analysis of a sigmoidal regions three-dimensional structure and how it evolves in relation to its eruptive dynamics. We use data taken during a recent study of a sigmoidal active region passing across the solar disk (an element of the third Whole Sun Month campaign). While S-shaped structures are generally observed in soft X-ray (SXR) emission, the observations that we present demonstrate their visibility at a range of wavelengths including those showing an associated sigmoidal filament. We examine the relationship between the S-shaped structures seen in SXR and those seen in cooler lines in order to probe the sigmoidal regions three-dimensional density and temperature structure. We also consider magnetic field observations and extrapolations in relation to these coronal structures. We present an interpretation of the disk passage of the sigmoidal region, in terms of a twisted magnetic flux rope that emerges into and equilibrates with overlying coronal magnetic field structures, which explains many of the key observed aspects of the regions structure and evolution. In particular, the evolving flux rope interpretation provides insight into why and how the region moves between active and quiescent phases, how the regions sigmoidicity is maintained during its evolution, and under what circumstances sigmoidal structures are apparent at a range of wavelengths.


The Astrophysical Journal | 2000

The counterkink rotation of a non-hale active region

M. C. López Fuentes; P. Démoulin; Cristina Hemilse Mandrini; L. van Driel-Gesztelyi

We describe the long-term evolution of a bipolar non-Hale active region that was observed from 1995 October to 1996 January. During these four solar rotations the sunspots and subsequent flux concentrations, during the decay phase of the region, were observed to move in such a way that by December their orientation conformed to the Hale-Nicholson polarity law. The sigmoidal shape of the observed soft X-ray coronal loops allows us to determine the sense of the twist in the magnetic configuration. This sense is confirmed by extrapolating the observed photospheric magnetic field, using a linear force-free approach, and comparing the shape of computed field lines with the observed coronal loops. This sense of twist agrees with that of the dominant helicity in the solar hemisphere where the region lies, as well as with the evolution observed in the longitudinal magnetogram during the first rotation. At first sight the relative motions of the spots may be misinterpreted as the rising of an Ω loop deformed by a kink instability, but we deduce from the sense of their relative displacements a handedness for the flux-tube axis (writhe) that is opposite to that of the twist in the coronal loops and, therefore, to what is expected for a kink-unstable flux tube. After excluding the kink instability, we interpret our observations in terms of a magnetic flux tube deformed by external motions while rising through the convective zone. We compare our results with those of other related studies, and we discuss, in particular, whether the kink instability is relevant to explain the peculiar evolution of some active regions.


Advances in Space Research | 2015

Understanding space weather to shield society : A global road map for 2015-2025 commissioned by COSPAR and ILWS

Carolus J. Schrijver; K. Kauristie; A. D. Aylward; Clezio Marcos Denardini; Sarah E. Gibson; Alexi Glover; Nat Gopalswamy; M. Grande; Mike Hapgood; Daniel Heynderickx; Norbert Jakowski; V. V. Kalegaev; Giovanni Lapenta; Jon A. Linker; Siqing Liu; Cristina Hemilse Mandrini; Ian R. Mann; Tsutomu Nagatsuma; Dibyendu Nandy; Takahiro Obara; T. Paul O'Brien; T. G. Onsager; H. J. Opgenoorth; Michael Terkildsen; C. E. Valladares; N. Vilmer

There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that co ...


Solar Physics | 2010

How Can a Negative Magnetic Helicity Active Region Generate a Positive Helicity Magnetic Cloud

Ramesh Chandra; E. Pariat; B. Schmieder; Cristina Hemilse Mandrini; Wahab Uddin

The geoeffective magnetic cloud (MC) of 20 November 2003 was associated with the 18 November 2003 solar active events in previous studies. In some of these, it was estimated that the magnetic helicity carried by the MC had a positive sign, as did its solar source, active region (AR) NOAA 10501. In this article we show that the large-scale magnetic field of AR 10501 has a negative helicity sign. Since coronal mass ejections (CMEs) are one of the means by which the Sun ejects magnetic helicity excess into interplanetary space, the signs of magnetic helicity in the AR and MC must agree. Therefore, this finding contradicts what is expected from magnetic helicity conservation. However, using, for the first time, correct helicity density maps to determine the spatial distribution of magnetic helicity injections, we show the existence of a localized flux of positive helicity in the southern part of AR 10501. We conclude that positive helicity was ejected from this portion of the AR leading to the observed positive helicity MC.

Collaboration


Dive into the Cristina Hemilse Mandrini's collaboration.

Top Co-Authors

Avatar

P. Démoulin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

S. Dasso

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. G. Rovira

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Maria L. Luoni

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. D. Cristiani

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

L. K. Harra

University College London

View shared research outputs
Top Co-Authors

Avatar

Marcelo C. Lopez Fuentes

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

M. C. López Fuentes

National Scientific and Technical Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge