Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Lo Celso is active.

Publication


Featured researches published by Cristina Lo Celso.


Nature | 2009

Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche

Cristina Lo Celso; Heather E. Fleming; Juwell Wu; Cher X. Zhao; Sam Miake-Lye; Joji Fujisaki; Daniel Côté; David W. Rowe; Charles P. Lin; David T. Scadden

Stem cells reside in a specialized, regulatory environment termed the niche that dictates how they generate, maintain and repair tissues. We have previously documented that transplanted haematopoietic stem and progenitor cell populations localize to subdomains of bone-marrow microvessels where the chemokine CXCL12 is particularly abundant. Using a combination of high-resolution confocal microscopy and two-photon video imaging of individual haematopoietic cells in the calvarium bone marrow of living mice over time, we examine the relationship of haematopoietic stem and progenitor cells to blood vessels, osteoblasts and endosteal surface as they home and engraft in irradiated and c-Kit-receptor-deficient recipient mice. Osteoblasts were enmeshed in microvessels and relative positioning of stem/progenitor cells within this complex tissue was nonrandom and dynamic. Both cell autonomous and non-autonomous factors influenced primitive cell localization. Different haematopoietic cell subsets localized to distinct locations according to the stage of differentiation. When physiological challenges drove either engraftment or expansion, bone-marrow stem/progenitor cells assumed positions in close proximity to bone and osteoblasts. Our analysis permits observing in real time, at a single cell level, processes that previously have been studied only by their long-term outcome at the organismal level.


Cell Stem Cell | 2008

Wnt Signaling in the Niche Enforces Hematopoietic Stem Cell Quiescence and Is Necessary to Preserve Self-Renewal In Vivo

Heather E. Fleming; Viktor Janzen; Cristina Lo Celso; Jun Guo; Kathleen M. Leahy; Henry M. Kronenberg; David T. Scadden

Wingless (Wnt) is a potent morphogen demonstrated in multiple cell lineages to promote the expansion and maintenance of stem and progenitor cell populations. Wnt effects are highly context dependent, and varying effects of Wnt signaling on hematopoietic stem cells (HSCs) have been reported. We explored the impact of Wnt signaling in vivo, specifically in the context of the HSC niche by using an osteoblast-specific promoter driving expression of the paninhibitor of canonical Wnt signaling, Dickkopf1 (Dkk1). Here we report that Wnt signaling was markedly inhibited in HSCs and, unexpectedly given prior reports, reduction in HSC Wnt signaling resulted in reduced p21Cip1 expression, increased cell cycling, and a progressive decline in regenerative function after transplantation. This effect was microenvironment determined, but irreversible if the cells were transferred to a normal host. Wnt pathway activation in the niche is required to limit HSC proliferation and preserve the reconstituting function of endogenous hematopoietic stem cells.


Development | 2004

Transient activation of β-catenin signalling in adult mouse epidermis is sufficient to induce new hair follicles but continuous activation is required to maintain hair follicle tumours

Cristina Lo Celso; David M. Prowse; Fiona M. Watt

When β-catenin signalling is disturbed from mid-gestation onwards lineage commitment is profoundly altered in postnatal mouse epidermis. We have investigated whether adult epidermis has the capacity forβ -catenin-induced lineage conversion without prior embryonic priming. We fused N-terminally truncated, stabilised β-catenin to the ligand-binding domain of a mutant oestrogen receptor (ΔNβ-cateninER).Δ Nβ-cateninER was expressed in the epidermis of transgenic mice under the control of the keratin 14 promoter and β-catenin activity was induced in adult epidermis by topical application of 4-hydroxytamoxifen (4OHT). Within 7 days of daily 4OHT treatment resting hair follicles were recruited into the hair growth cycle and epithelial outgrowths formed from existing hair follicles and from interfollicular epidermis. The outgrowths expressed Sonic hedgehog, Patched and markers of hair follicle differentiation, indicative of de novo follicle formation. The interfollicular epidermal differentiation program was largely unaffected but after an initial wave of sebaceous gland duplication sebocyte differentiation was inhibited. A single application of 4OHT was as effective as repeated doses in inducing new follicles and growth of existing follicles. Treatment of epidermis with 4OHT for 21 days resulted in conversion of hair follicles to benign tumours resembling trichofolliculomas. The tumours were dependent on continuous activation of β-catenin and by 28 days after removal of the drug they had largely regressed. We conclude that interfollicular epidermis and sebaceous glands retain the ability to be reprogrammed in adult life and that continuousβ -catenin signalling is required to maintain hair follicle tumours.


Nature | 2011

In vivo imaging of Treg cells providing immune privilegeto the haematopoietic stem-cell niche

Joji Fujisaki; Juwell Wu; Alicia L. Carlson; Lev Silberstein; Prabhakar Putheti; Rafael A. Larocca; Wenda Gao; Toshiki I. Saito; Cristina Lo Celso; Hitoshi Tsuyuzaki; Tatsuyuki Sato; Daniel Côté; Megan Sykes; Terry B. Strom; David T. Scadden; Charles P. Lin

Stem cells reside in a specialized regulatory microenvironment or niche, where they receive appropriate support for maintaining self-renewal and multi-lineage differentiation capacity. The niche may also protect stem cells from environmental insults including cytotoxic chemotherapy and perhaps pathogenic immunity. The testis, hair follicle and placenta are all sites of residence for stem cells and are immune-suppressive environments, called immune-privileged sites, where multiple mechanisms cooperate to prevent immune attack, even enabling prolonged survival of foreign allografts without immunosuppression. We sought to determine if somatic stem-cell niches more broadly are immune-privileged sites by examining the haematopoietic stem/progenitor cell (HSPC) niche in the bone marrow, a site where immune reactivity exists. We observed persistence of HSPCs from allogeneic donor mice (allo-HSPCs) in non-irradiated recipient mice for 30 days without immunosuppression with the same survival frequency compared to syngeneic HSPCs. These HSPCs were lost after the depletion of FoxP3 regulatory T (Treg) cells. High-resolution in vivo imaging over time demonstrated marked co-localization of HSPCs with Treg cells that accumulated on the endosteal surface in the calvarial and trabecular bone marrow. Treg cells seem to participate in creating a localized zone where HSPCs reside and where Treg cells are necessary for allo-HSPC persistence. In addition to processes supporting stem-cell function, the niche will provide a relative sanctuary from immune attack.


Development | 2006

Jagged 1 is a β-catenin target gene required for ectopic hair follicle formation in adult epidermis

Soline Estrach; Carrie A. Ambler; Cristina Lo Celso; Katsuto Hozumi; Fiona M. Watt

The Wnt and Notch signalling pathways regulate hair follicle maintenance, but how they intersect is unknown. We show that Notch signalling is active in the hair follicle pre-cortex, a region of high Wnt activity, where commitment to hair lineages occurs. Deletion of jagged 1 (Jag1) results in inhibition of the hair growth cycle and conversion of hair follicles into cysts of cells undergoing interfollicular epidermal differentiation. Conversely, activation of Notch in adult epidermis triggers expansion of the base of the hair follicle, sebaceous gland enlargement and abnormal clumping of the follicles. In adult epidermis, the induction of new hair follicle formation by β-catenin is prevented by blocking Notch signalling pharmacologically or through Jag1 deletion. Conversely, activation of both pathways accelerates growth and differentiation of ectopic follicles.β -catenin stimulates Notch signalling by inducing Jag1 transcription. We conclude that the Notch pathway acts downstream of the Wnt/β-catenin pathway to determine epidermal cell fate.


Journal of Cell Science | 2011

The haematopoietic stem cell niche at a glance.

Cristina Lo Celso; David T. Scadden

Haematopoietic stem cells (HSCs) regulate the balanced turnover of erythrocytes, platelets and all immune cells by switching between self-renewal, differentiation, quiescence and dormancy ([Trumpp et al., 2010][1]) and, thereby, maintain homeostasis both in the steady state as well as in response to


Proceedings of the National Academy of Sciences of the United States of America | 2008

Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics

Paul P. Szotek; Henry L. Chang; Kristen Brennand; Akihiro Fujino; Rafael Pieretti-Vanmarcke; Cristina Lo Celso; David Dombkowski; Frederic I. Preffer; Kenneth Cohen; Jose Teixeira; Patricia K. Donahoe

Ovulation induces cyclic rupture and regenerative repair of the ovarian coelomic epithelium. This process of repeated disruption and repair accompanied by complex remodeling typifies a somatic stem/progenitor cell-mediated process. Using BrdU incorporation and doxycycline inducible histone2B-green fluorescent protein pulse–chase techniques, we identify a label-retaining cell population in the coelomic epithelium of the adult mouse ovary as candidate somatic stem/progenitor cells. The identified population exhibits quiescence with asymmetric label retention, functional response to estrous cycling in vivo by proliferation, enhanced growth characteristics by in vitro colony formation, and cytoprotective mechanisms by enrichment for the side population. Together, these characteristics identify the label-retaining cell population as a candidate for the putative somatic stem/progenitor cells of the coelomic epithelium of the mouse ovary.


Interface Focus | 2013

From seeing to believing: labelling strategies for in vivo cell-tracking experiments

Fränze Progatzky; Margaret J. Dallman; Cristina Lo Celso

Intravital microscopy has become increasingly popular over the past few decades because it provides high-resolution and real-time information about complex biological processes. Technological advances that allow deeper penetration in live tissues, such as the development of confocal and two-photon microscopy, together with the generation of ever-new fluorophores that facilitate bright labelling of cells and tissue components have made imaging of vertebrate model organisms efficient and highly informative. Genetic manipulation leading to expression of fluorescent proteins is undoubtedly the labelling method of choice and has been used to visualize several cell types in vivo. This approach, however, can be technically challenging and time consuming. Over the years, several dyes have been developed to allow rapid, effective and bright ex vivo labelling of cells for subsequent transplantation and imaging. Here, we review and discuss the advantages and limitations of a number of strategies commonly used to label and track cells at high resolution in vivo in mouse and zebrafish, using fluorescence microscopy. While the quest for the perfect label is far from achieved, current reagents are valuable tools enabling the progress of biological discovery, so long as they are selected and used appropriately.


Stem Cells | 2008

Characterization of Bipotential Epidermal Progenitors Derived from Human Sebaceous Gland: Contrasting Roles of c‐Myc and β‐Catenin

Cristina Lo Celso; Melanie A. Berta; Kristin M. Braun; Michaela Frye; Stephen Lyle; Christos C. Zouboulis; Fiona M. Watt

The current belief is that the epidermal sebaceous gland (SG) is maintained by unipotent stem cells that are replenished by multipotent stem cells in the hair follicle (HF) bulge. However, sebocytes can be induced by c‐Myc (Myc) activation in interfollicular epidermis (IFE), suggesting the existence of bipotential stem cells. We found that every SZ95 immortalized human sebocyte that underwent clonal growth in culture generated progeny that differentiated into both sebocytes and cells expressing involucrin and cornifin, markers of IFE and HF inner root sheath differentiation. The ability to generate involucrin positive cells was also observed in a new human sebocyte line, Seb‐E6E7. SZ95 xenografts differentiated into SG and IFE but not HF. SZ95 cells that expressed involucrin had reduced Myc levels; however, this did not correlate with increased expression of the Myc repressor Blimp1, and Blimp1 expression did not distinguish cells undergoing SG, IFE, or HF differentiation in vivo. Overexpression of Myc stimulated sebocyte differentiation, whereas overexpression of β‐catenin stimulated involucrin and cornifin expression. In transgenic mice simultaneous activation of Myc and β‐catenin revealed mutual antagonism: Myc blocked ectopic HF formation and β‐catenin reduced SG differentiation. Overexpression of the Myc target gene Indian hedgehog did not promote sebocyte differentiation in culture and cyclopamine treatment, while reducing proliferation, did not block Myc induced sebocyte differentiation in vivo. Our studies provide evidence for a bipotential epidermal stem cell population in an in vitro model of human epidermal lineage selection and highlight the importance of Myc as a regulator of sebocyte differentiation.


Cell Stem Cell | 2008

Hematopoietic Stem Cell Responsiveness to Exogenous Signals Is Limited by Caspase-3

Viktor Janzen; Heather E. Fleming; Tamara Riedt; Göran Karlsson; Matthew J. Riese; Cristina Lo Celso; Griffin Reynolds; Craig D. Milne; Christopher J. Paige; Stefan Karlsson; Minna Woo; David T. Scadden

Limited responsiveness to inflammatory cytokines is a feature of adult hematopoietic stem cells and contributes to the relative quiescence and durability of the stem cell population in vivo. Here we report that the executioner Caspase, Caspase-3, unexpectedly participates in that process. Mice deficient in Caspase-3 had increased numbers of immunophenotypic long-term repopulating stem cells in association with multiple functional changes, most prominently cell cycling. Though these changes were cell autonomous, they reflected altered activation by exogenous signals. Caspase-3(-/-) cells exhibited cell type-specific changes in phosphorylated members of the Ras-Raf-MEK-ERK pathway in response to specific cytokines, while notably, members of other pathways, such as pSTAT3, pSTAT5, pAKT, pp38 MAPK, pSmad2, and pSmad3, were unaffected. Caspase-3 contributes to stem cell quiescence, dampening specific signaling events and thereby cell responsiveness to microenvironmental stimuli.

Collaboration


Dive into the Cristina Lo Celso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edwin D. Hawkins

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicola Ruivo

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge