Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Marchetti is active.

Publication


Featured researches published by Cristina Marchetti.


Molecular and Cellular Biology | 2002

Glucocorticoid-Induced Leucine Zipper Inhibits the Raf-Extracellular Signal-Regulated Kinase Pathway by Binding to Raf-1

Emira Ayroldi; Ornella Zollo; Antonio Macchiarulo; Cristina Marchetti; Carlo Riccardi

ABSTRACT Glucocorticoid-induced leucine zipper (GILZ) is a leucine zipper protein, whose expression is augmented by dexamethasone (DEX) treatment and downregulated by T-cell receptor (TCR) triggering. Stable expression of GILZ in T cells mimics some of the effects of glucocorticoid hormones (GCH) in GCH-mediated immunosuppressive and anti-inflammatory activity. In fact, GILZ overexpression inhibits TCR-activated NF-κB nuclear translocation, interleukin-2 production, FasL upregulation, and the consequent activation-induced apoptosis. We have investigated the molecular mechanism underlying GILZ-mediated regulation of T-cell activation by analyzing the effects of GILZ on the activity of mitogen-activated protein kinase (MAPK) family members, including Raf, MAPK/extracellular signal-regulated kinase (ERK) 1/2 (MEK-1/2), ERK-1/2, and c-Jun NH2-terminal protein kinase (JNK). Our results indicate that GILZ inhibited Raf-1 phosphorylation, which resulted in the suppression of both MEK/ERK-1/2 phosphorylation and AP-1-dependent transcription. We demonstrate that GILZ interacts in vitro and in vivo with endogenous Raf-1 and that Raf-1 coimmunoprecipitated with GILZ in murine thymocytes treated with DEX. Mapping of the binding domains and experiments with GILZ mutants showed that GILZ binds the region of Raf interacting with Ras through the NH2-terminal region. These data suggest that GILZ contributes, through protein-to-protein interaction with Raf-1 and the consequent inhibition of Raf-MEK-ERK activation, to regulating the MAPK pathway and to providing a further mechanism underlying GCH immunosuppression.


Journal of Clinical Investigation | 2007

GILZ mediates the antiproliferative activity of glucocorticoids by negative regulation of Ras signaling

Emira Ayroldi; Ornella Zollo; Alessandra Bastianelli; Cristina Marchetti; Massimiliano Agostini; Rosa Di Virgilio; Carlo Riccardi

Tsc22d3 coding for glucocorticoid-induced leucine zipper (GILZ) was initially identified as a dexamethasone-responsive gene involved in the control of T lymphocyte activation and apoptosis. However, the physiological role of this molecule and its function in the biological activity of glucocorticoids (GCs) has not been clarified. Here, we demonstrate that GILZ interacts directly with Ras in vitro and in vivo as shown by GILZ and Ras coimmunoprecipitation and colocalization upon PMA activation in primary mouse spleen T lymphocytes and thymus cells. The analysis of GILZ mutants showed that they bound Ras through the tuberous sclerosis complex box (TSC) and, depending on the Ras activation level, formed a trimeric complex with Ras and Raf, which we previously identified as a GILZ binder. As a consequence of these interactions, GILZ diminished the activation of Ras and Raf downstream targets including ERK1/2, AKT/PKB serine/threonine kinase, and retinoblastoma (Rb) phosphorylation and cyclin D1 expression, leading to inhibition of Ras- and Raf-dependent cell proliferation and Ras-induced NIH-3T3 transformation. GILZ silencing resulted in an increase in concanavalin A-induced T cell proliferation and, most notably, inhibition of dexamethasone antiproliferative effects. Together, these findings indicate that GILZ serves as a negative regulator of Ras- and Raf-induced proliferation and is an important mediator of the antiproliferative effect of GCs.


Molecular and Cellular Biology | 2003

S100B inhibits myogenic differentiation and myotube formation in a RAGE-independent manner.

Guglielmo Sorci; Francesca Riuzzi; Anna Lisa Agneletti; Cristina Marchetti; Rosario Donato

ABSTRACT S100B is a Ca2+-modulated protein of the EF-hand type with both intracellular and extracellular roles. S100B, which is most abundant in the brain, has been shown to exert trophic and toxic effects on neurons depending on the concentration attained in the extracellular space. S100B is also found in normal serum, and its serum concentration increases in several nervous and nonnervous pathological conditions, suggesting that S100B-expressing cells outside the brain might release the protein and S100B might exert effects on nonnervous cells. We show here that at picomolar to nanomolar levels, S100B inhibits myogenic differentiation of rat L6 myoblasts via inactivation of p38 kinase with resulting decrease in the expression of the myogenic differentiation markers, myogenin, muscle creatine kinase, and myosin heavy chain, and reduction of myotube formation. Although myoblasts express the multiligand receptor RAGE, which has been shown to transduce S100B effects on neurons, S100B produces identical effects on myoblasts overexpressing either full-length RAGE or RAGE lacking the transducing domain. This suggests that S100B affects myoblasts by interacting with another receptor and that RAGE is not the only receptor for S100B. Our data suggest that S100B might participate in the regulation of muscle development and regeneration by inhibiting crucial steps of the myogenic program in a RAGE-independent manner.


Journal of Cellular Physiology | 2004

S100B causes apoptosis in a myoblast cell line in a RAGE-independent manner

Guglielmo Sorci; Francesca Riuzzi; Anna Lisa Agneletti; Cristina Marchetti; Rosario Donato

S100B, a Ca2+‐modulated protein with both intracellular and extracellular regulatory roles, is most abundant in astrocytes, is expressed in various amounts in several non‐nervous cells and is also found in normal serum. Astrocytes secrete S100B, and extracellular S100B exerts trophic and toxic effects on neurons depending on its concentration, in part by interacting with the receptor for advanced glycation end products (RAGE). The presence of S100B in normal serum and elevation of its serum concentration in several non‐nervous pathological conditions suggest that S100B‐expressing cells outside the brain might release the protein and S100B might affect non‐nervous cells. Recently we reported that at picomolar to nanomolar doses S100B inhibits rat L6 myoblast differentiation via inactivation of p38 kinase in a RAGE‐independent manner. We show here that at ≥5 nM in the absence of and at >100 nM in the presence of serum S100B causes myoblast apoptosis via stimulation of reactive oxygen species (ROS) production and inhibition of the pro‐survival kinase, extracellular signal‐regulated kinase (ERK)1/2, again in a RAGE‐independent manner. Together with our previous data, the present results suggest that S100B might participate in the regulation of muscle development and regeneration by two independent mechanism, i.e., by inhibiting crucial steps of the myogenic program at the physiological levels found in serum and by causing elevation of ROS production and myoblast apoptosis following accumulation in serum and/or muscle extracellular space. Our data also suggest that RAGE has no role in the transduction of S100B effects on myoblasts, implying that S100B can interact with more than one receptor to affect its target cells. J. Cell. Physiol. 199: 274–283, 2004© 2003 Wiley‐Liss, Inc.


Journal of Biological Chemistry | 2002

Exogenous phospholipids specifically affect transmembrane potential of brain mitochondria and cytochrome C release.

Lucia Piccotti; Cristina Marchetti; Graziella Migliorati; Rita Roberti; Lanfranco Corazzi

Release of cytochrome c, a decrease of membrane potential (Δψm), and a reduction of cardiolipin (CL) of rat brain mitochondria occurred upon incubation in the absence of respiratory substrates. Since CL is critical for mitochondrial functioning, CL enrichment of mitochondria was achieved by fusion with CL liposomes. Fusion was triggered by potassium phosphate at concentrations producing mitochondrial permeability transition pore opening but not cytochrome c release, which was observed only at >10 mm. Cyclosporin A inhibited phosphate-induced CL fusion, whereas Pronase pretreatment of mitochondria abolished it, suggesting that mitochondrial permeability transition pore and protein(s) are involved in the fusion process. Phosphate-dependent fusion was enhanced in respiratory state 3 and influenced by phospholipid classes in the order CL > phosphatidylglycerol (PG) > phosphatidylserine. The probe 10-nonylacridine orange indicated that fused CL had migrated to the inner mitochondrial membrane. In state 3, CL enrichment of mitochondria resulted in a pH decrease in the intermembrane space. Cytofluorimetric analysis of mitochondria stained with 3,3′-diexyloxacarbocyanine iodide and 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzymidazolylcarbocyanine iodide showed Δψm increase upon fusion with CL or PG. In contrast, phosphatidylserine fusion required Δψmconsumption, suggesting that Δψm is the driving force in mitochondrial phospholipid importation. Moreover, enrichment with CL and PG brought the low energy mitochondrial population to high Δψm values and prevented phosphate-dependent cytochrome c release.


Journal of Bioenergetics and Biomembranes | 2011

Mitochondrial dysfunction and effect of antiglycolytic bromopyruvic acid in GL15 glioblastoma cells

Lara Macchioni; Magdalena Davidescu; Miriam Sciaccaluga; Cristina Marchetti; Graziella Migliorati; Stefano Coaccioli; Rita Roberti; Lanfranco Corazzi; Emilia Castigli

Most cancer cells, including GL15 glioblastoma cells, rely on glycolysis for energy supply. The effect of antiglycolytic bromopyruvate on respiratory parameters and viability of GL15 cells was investigated. Bromopyruvate caused Δψm and MTT collapse, ATP decrease, and cell viability loss without involving apoptotic or necrotic pathways. The autophagy marker LC3-II was increased. Δψm decrease was accompanied by reactive oxygen species (ROS) increase and cytochrome c (cyt c) disappearance, suggesting a link between free radical generation and intramitochondrial cyt c degradation. Indeed, the free radical inducer menadione caused a decrease in cyt c that was reversed by N-acetylcysteine. Cyt c is tightly bound to the inner mitochondrial membrane in GL15 cells, which may confer protein peroxidase activity, resulting in auto-oxidation and protein targeting to degradation in the presence of ROS. This process is directed towards impairment of the apoptotic cyt c cascade, although cells are committed to die.


Bioorganic & Medicinal Chemistry | 2003

1,4-Benzothiazine analogues and apoptosis: Structure-activity relationship

Renata Fringuelli; Fausto Schiaffella; M.Pilar Utrilla Navarro; Lara Milanese; Cristina Santini; Michela Rapucci; Cristina Marchetti; Carlo Riccardi

We have previously shown 1,4-benzothiazine (1,4-B) derivatives induce thymocyte apoptosis in vitro and thymus cell loss in vivo. Apoptosis is mediated through a complex of biochemical events including phosphatidylcholine specific-phospholipase C (PC-PLC) activation, acidic sphingomyelinase (aSMase) activation and ceramide generation, caspase-8 and caspase-3 activation. As preliminary analysis of the structure-activity relationship (SAR) suggested some structural features were responsible for apoptosis, we synthesised several derivatives and tested for apoptosis activity at equimolar concentrations. In particular, we synthesised analogues that differed in the nature of skeleton (1,4-benzothiazine, 1,4-benzoxazine and 1,2,3,4-tetrahydroquinoline) and in the nature of side chain (imidazole, benzimidazole or piperazine as azole substituent; presence, absence or transformation of alcoholic group). Results of apoptosis induction indicate that transforming the 1,4-benzothiazine skeleton into 1,2,3,4-tetrahydroquinoline does not result in significant change. Transformation into 1,4-benzoxazine decreased activity. Replacing imidazole at the side chain with different piperazines also decreased activity while replacing it with benzimidazole does not change apoptotic activity. Finally, removal of the alcoholic group by dehydration to olefin, or by transforming it into ether, increased activity. Moreover, in an attempt to analyse further the SAR characteristics that are responsible for 1,4-B-activated apoptosis we tested the effect on caspase-8,-9 and-3 activation. 1,4-B analogues activate caspases and the structural requirements correlate with those responsible for apoptosis induction.


Molecular and Cellular Biochemistry | 2000

Dexamethasone increases the incorporation of [3H] serine into phosphatidylserine and the activity of serine base exchange enzyme in mouse thymocytes: A possible relation between serine base exchange enzyme and apoptosis

Sandra Buratta; Graziella Migliorati; Cristina Marchetti; Raffaela Mambrini; Carlo Riccardi; Rita Mozzi

The exposure of phosphatidylserine toward the external surface of the membrane is a well-established event of programmed cell death. The possibility that an apoptotic stimulus influences the metabolism of this phospholipid could be relevant not only in relation to the previously mentioned event but also in relation to the capability of membrane phosphatidylserine to influence PKC activity. The present investigation demonstrates that treatment of mouse thymocytes with the apoptotic stimulus dexamethasone, enhances the incorporation of [3H]serine into phosphatidylserine. Cell treatment with dexamethasone also enhanced the activity of serine base exchange enzyme, assayed in thymocyte lysate. Both the effects were observed at periods of treatment preceding DNA fragmentation. The addition of unlabelled ethanolamine, together with [3H]serine to the medium containing dexamethasone-treated thymocytes lowered the radioactivity into phosphatidylserine. Serine base exchange enzyme activity was influenced by the procedure used to prepare thymocyte lysate and was lowered by the addition of fluoroaluminate, that is widely used as a G-protein activator. The increase of serine base exchange enzyme activity induced by dexamethasone treatment was observed independently by the procedure used to prepare cell lysate and by the presence or absence of fluoroaluminate.


Journal of Occupational and Environmental Medicine | 2006

Chromium VI-induced apoptosis in a human bronchial epithelial cell line (BEAS-2B) and a lymphoblastic leukemia cell line (MOLT-4).

Angela Gambelunghe; Renza Piccinini; Giuseppe Abbritti; Maura Ambrogi; Barbara Ugolini; Cristina Marchetti; Graziella Migliorati; Chiara Balducci; Giacomo Muzi

Hexavalent chromium compounds are well-documented human carcinogens. In vitro experiments show Cr (VI) induces cell death by apoptosis by activating p53 protein. The aim of this study was to evaluate Cr (VI)-induced apoptosis in a human bronchial epithelial cell line (BEAS-2B) and in a lymphoblastic leukemia cell line (MOLT-4). Cr (VI) caused a dose- and time-dependent increase in the apoptosis rate in both cell lines. Western blotting showed increased p53 protein expression in MOLT-4 cells, but not in BEAS-2B cells, after exposure to 0.5 and 3 &mgr;M hexavalent chromium for 12 hours and 4 hours, respectively. Apoptotic cell death induced by Cr (VI) was not decreased by pretreatment with caspase-3, -8, and -9 inhibitors. These preliminary results provide evidence of Cr (VI)-induced apoptosis, which deserves further investigation in occupationally exposed workers.


Molecular and Cellular Oncology | 2015

The novel partnership of L-GILZ and p53: a new affair in cancer?

Emira Ayroldi; Cristina Marchetti; Carlo Riccardi

A recent report from our laboratory reveals how long glucocorticoid-induced leucine zipper (L-Gilz) protein binds to p53 and mouse double minute 2 homolog (Mdm2), thus dissociating the p53/Mdm2 complex and activating p53 with subsequent activation of downstream genes p21 and p53 upregulated modulator of apoptosis (Puma). p53 activation appears to be the mechanism by which both basal and glucocorticoid (GC)-induced L-Gilz inhibits proliferation and induces antioncogenic activity in human cancer.

Collaboration


Dive into the Cristina Marchetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge