Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Moreno is active.

Publication


Featured researches published by Cristina Moreno.


Frontiers in Physiology | 2012

Effects of n-3 Polyunsaturated Fatty Acids on Cardiac Ion Channels.

Cristina Moreno; Álvaro Macías; Ángela Prieto; Alicia de la Cruz; Teresa Gonzalez; Carmen Valenzuela

Dietary n−3 polyunsaturated fatty acids (PUFAs) have been reported to exhibit antiarrhythmic properties, and these effects have been attributed to their capability to modulate ion channels. In the present review, we will focus on the effects of PUFAs on a cardiac sodium channel (Nav1.5) and two potassium channels involved in cardiac atrial and ventricular repolarization (Kv) (Kv1.5 and Kv11.1). n−3 PUFAs of marine (docosahexaenoic, DHA and eicosapentaenoic acid, EPA) and plant origin (alpha-linolenic acid, ALA) block Kv1.5 and Kv11.1 channels at physiological concentrations. Moreover, DHA and EPA decrease the expression levels of Kv1.5, whereas ALA does not. DHA and EPA also decrease the magnitude of the currents elicited by the activation of Nav1.5 and calcium channels. These effects on sodium and calcium channels should theoretically shorten the cardiac action potential duration (APD), whereas the blocking actions of n−3 PUFAs on Kv channels would be expected to produce a lengthening of cardiac action potential. Indeed, the effects of n−3 PUFAs on the cardiac APD and, therefore, on cardiac arrhythmias vary depending on the method of application, the animal model, and the underlying cardiac pathology.


Journal of Molecular and Cellular Cardiology | 2010

Celecoxib Blocks Cardiac Kv1.5, Kv4.3 and Kv7.1 (KCNQ1) Channels. Effects on Cardiac Action Potentials

Álvaro Macías; Cristina Moreno; Javier Moral-Sanz; Angel Cogolludo; Miren David; Matteo Alemanni; Francisco Perez-Vizcaino; Antonio Zaza; Carmen Valenzuela; Teresa Gonzalez

Celecoxib is a COX-2 inhibitor that has been related to an increased cardiovascular risk and that exerts several actions on different targets. The aim of this study was to analyze the effects of this drug on human cardiac voltage-gated potassium channels (Kv) involved on cardiac repolarization Kv1.5 (I(Kur)), Kv4.3+KChIP2 (I(to1)) and Kv7.1+KCNE1 (I(Ks)) and to compare with another COX-2 inhibitor, rofecoxib. Currents were recorded in transfected mammalian cells by whole-cell patch-clamp. Celecoxib blocked all the Kv channels analyzed and rofecoxib was always less potent, except on Kv4.3+KChIP2 channels. Kv1.5 block increased in the voltage range of channel activation, decreasing at potentials positive to 0 mV. The drug modified the activation curve of the channels that became biphasic. Block was frequency-dependent, increasing at fastest frequencies. Celecoxib effects were not altered by TEA(out) in R487Y mutant Kv1.5 channels but the kinetics of block were slower and the degree of block was smaller with TEA(in), indicating that celecoxib acts from the cytosolic side. We confirmed the blocking properties of celecoxib on native Kv currents from rat vascular cells, where Kv1.5 are the main contributors (IC(50)≈ 7 μM). Finally, we demonstrate that celecoxib prolongs the action potential duration in mouse cardiac myocytes and shortens it in guinea pig cardiac myocytes, suggesting that Kv block induced by celecoxib may be of clinical relevance.


Cardiovascular Research | 2015

A new KCNQ1 mutation at the S5 segment that impairs its association with KCNE1 is responsible for short QT syndrome

Cristina Moreno; Anna Oliveras; Alicia de la Cruz; Chiara Bartolucci; Carmen Muñoz; Eladia Salar; Juan R. Gimeno; Stefano Severi; Núria Comes; Antonio Felipe; Teresa Gonzalez; Pier D. Lambiase; Carmen Valenzuela

AIMS KCNQ1 and KCNE1 encode Kv7.1 and KCNE1, respectively, the pore-forming and the accessory subunits of the slow delayed rectifier potassium current, IKs. KCNQ1 mutations are associated with long and short QT syndrome. The aim of this study was to characterize the biophysical and cellular phenotype of a KCNQ1 missense mutation, F279I, found in a 23-year-old man with a corrected QT interval (QTc) of 356 ms and a family history of sudden cardiac death. METHODS AND RESULTS Experiments were performed using perforated patch-clamp, western blot, co-immunoprecipitation, biotinylation, and immunocytochemistry techniques in HEK293, COS7 cells and in cardiomyocytes transfected with WT Kv7.1/KCNE1 or F279I Kv7.1/KCNE1 channels. In the absence of KCNE1, F279I Kv7.1 current exhibited a lesser degree of inactivation than WT Kv7.1. Also, functional analysis of F279I Kv7.1 in the presence of KCNE1 revealed a negative shift in the activation curve and an acceleration of the activation kinetics leading to a gain of function in IKs. The co-assembly between F279I Kv7.1 channels and KCNE1 was markedly decreased compared with WT Kv7.1 channels, as revealed by co-immunoprecipitation and Föster Resonance Energy Transfer experiments. All these effects contribute to the increase of IKs when channels incorporate F279I Kv7.1 subunits, as shown by a computer model simulation of these data that predicts a shortening of the action potential (AP) consistent with the patient phenotype. CONCLUSION The F279I mutation induces a gain of function of IKs due to an impaired gating modulation of Kv7.1 induced by KCNE1, leading to a shortening of the cardiac AP.


Journal of Immunology | 2013

Modulation of Voltage-Dependent and Inward Rectifier Potassium Channels by 15-Epi-Lipoxin-A4 in Activated Murine Macrophages: Implications in Innate Immunity

Cristina Moreno; Patricia Prieto; Álvaro Macías; María Pimentel-Santillana; Alicia de la Cruz; Paqui G. Través; Lisardo Boscá; Carmen Valenzuela

Potassium channels modulate macrophage physiology. Blockade of voltage-dependent potassium channels (Kv) by specific antagonists decreases macrophage cytokine production and inhibits proliferation. In the presence of aspirin, acetylated cyclooxygenase-2 loses the activity required to synthesize PGs but maintains the oxygenase activity to produce 15R-HETE from arachidonate. This intermediate product is transformed via 5-LOX into epimeric lipoxins, termed 15-epi-lipoxins (15-epi-lipoxin A4 [e-LXA4]). Kv have been proposed as anti-inflammatory targets. Therefore, we studied the effects of e-LXA4 on signaling and on Kv and inward rectifier potassium channels (Kir) in mice bone marrow–derived macrophages (BMDM). Electrophysiological recordings were performed in these cells by the whole-cell patch-clamp technique. Treatment of BMDM with e-LXA4 inhibited LPS-dependent activation of NF-κB and IκB kinase β activity, protected against LPS activation–dependent apoptosis, and enhanced the accumulation of the Nrf-2 transcription factor. Moreover, treatment of LPS-stimulated BMDM with e-LXA4 resulted in a rapid decrease of Kv currents, compatible with attenuation of the inflammatory response. Long-term treatment of LPS-stimulated BMDM with e-LXA4 significantly reverted LPS effects on Kv and Kir currents. Under these conditions, e-LXA4 decreased the calcium influx versus that observed in LPS-stimulated BMDM. These effects were partially mediated via the lipoxin receptor (ALX), because they were significantly reverted by a selective ALX receptor antagonist. We provide evidence for a new mechanism by which e-LXA4 contributes to inflammation resolution, consisting of the reversion of LPS effects on Kv and Kir currents in macrophages.


Cardiovascular Research | 2015

Marine n-3 PUFAs modulate IKs gating, channel expression, and location in membrane microdomains

Cristina Moreno; Alicia de la Cruz; Anna Oliveras; Sanjay R. Kharche; Miriam Guizy; Núria Comes; Tomáš Starý; Carlotta Ronchi; Marcella Rocchetti; Isabelle Baró; Gildas Loussouarn; Antonio Zaza; Stefano Severi; Antonio Felipe; Carmen Valenzuela

AIMS Polyunsaturated fatty n-3 acids (PUFAs) have been reported to exhibit antiarrhythmic properties. However, the mechanisms of action remain unclear. We studied the electrophysiological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on IKs, and on the expression and location of Kv7.1 and KCNE1. METHODS AND RESULTS Experiments were performed using patch-clamp, western blot, and sucrose gradient techniques in COS7 cells transfected with Kv7.1/KCNE1 channels. Acute perfusion with both PUFAs increased Kv7.1/KCNE1 current, this effect being greater for DHA than for EPA. Similar results were found in guinea pig cardiomyocytes. Acute perfusion of either PUFA slowed the activation kinetics and EPA shifted the activation curve to the left. Conversely, chronic EPA did not modify Kv7.1/KCNE1 current magnitude and shifted the activation curve to the right. Chronic PUFAs decreased the expression of Kv7.1, but not of KCNE1, and induced spatial redistribution of Kv7.1 over the cell membrane. Cholesterol depletion with methyl-β-cyclodextrin increased Kv7.1/KCNE1 current magnitude. Under these conditions, acute EPA produced similar effects than those induced in non-cholesterol-depleted cells. A ventricular action potential computational model suggested antiarrhythmic efficacy of acute PUFA application under IKr block. CONCLUSIONS We provide evidence that acute application of PUFAs increases Kv7.1/KCNE1 through a probably direct effect, and shows antiarrhythmic efficacy under IKr block. Conversely, chronic EPA application modifies the channel activity through a change in the Kv7.1/KCNE1 voltage-dependence, correlated with a redistribution of Kv7.1 over the cell membrane. This loss of function may be pro-arrhythmic. This shed light on the controversial effects of PUFAs regarding arrhythmias.


Journal of Biological Chemistry | 2012

Protein Kinase C (PKC) Activity Regulates Functional Effects of Kvβ1.3 Subunit on KV1.5 Channels IDENTIFICATION OF A CARDIAC Kv1.5 CHANNELOSOME

Miren David; Alvaro A. Macias; Cristina Moreno; Ángela Prieto; Ramón Martínez-Mármol; Rubén Vicente; Teresa González; Antonio Felipe; Michael M. Tamkun; Carmen Valenzuela

Background: Kvβ1.3 fast inactivation conferred onto Kv1.5 is PKC-dependent. Results: PKC inhibition shifts Kvβ1.3-induced inactivation curve without altering Kv1.5-Kvβ1.3 interaction. A Kv1.5 channelosome is characterized. Conclusion: Kv1.5 channelosome is composed of several PKC isoforms (βI, βII, and θ), Kvβ1.3 and RACK1 in HEK293 and in rat ventricular cells. Significance: This is the first evidence of a cardiac Kv1.5-Kvβ1.3-RACK1-PKC macromolecular complex. Kv1.5 channels are the primary channels contributing to the ultrarapid outward potassium current (IKur). The regulatory Kvβ1.3 subunit converts Kv1.5 channels from delayed rectifiers with a modest degree of slow inactivation to channels with both fast and slow inactivation components. Previous studies have shown that inhibition of PKC with calphostin C abolishes the fast inactivation induced by Kvβ1.3. In this study, we investigated the mechanisms underlying this phenomenon using electrophysiological, biochemical, and confocal microscopy approaches. To achieve this, we used HEK293 cells (which lack Kvβ subunits) transiently cotransfected with Kv1.5+Kvβ1.3 and also rat ventricular and atrial tissue to study native α-β subunit interactions. Immunocytochemistry assays demonstrated that these channel subunits colocalize in control conditions and after calphostin C treatment. Moreover, coimmunoprecipitation studies showed that Kv1.5 and Kvβ1.3 remain associated after PKC inhibition. After knocking down all PKC isoforms by siRNA or inhibiting PKC with calphostin C, Kvβ1.3-induced fast inactivation at +60 mV was abolished. However, depolarization to +100 mV revealed Kvβ1.3-induced inactivation, indicating that PKC inhibition causes a dramatic positive shift of the inactivation curve. Our results demonstrate that calphostin C-mediated abolishment of fast inactivation is not due to the dissociation of Kv1.5 and Kvβ1.3. Finally, immunoprecipitation and immunocytochemistry experiments revealed an association between Kv1.5, Kvβ1.3, the receptor for activated C kinase (RACK1), PKCβI, PKCβII, and PKCθ in HEK293 cells. A very similar Kv1.5 channelosome was found in rat ventricular tissue but not in atrial tissue.


Mini-reviews in Medicinal Chemistry | 2010

Kv1.5-Kvβ Interactions: Molecular Determinants and Pharmacological Consequences

Teresa Gonzalez; Miren David; Cristina Moreno; Alvaro A. Macias; Carmen Valenzuela

Kv1.5 channels are homotetramers of α-pore subunits mainly present in human atrium and pulmonary vasculature. Thus, Kv1.5 is a pharmacological target for cardiovascular diseases. Kvβ1.3 assemblies with Kvα1.5 and modifies its gating and pharmacology. A further knowledge of α-β interactions and pharmacology will lead a better design of new drugs.


Frontiers in Pharmacology | 2012

Polyunsaturated Fatty Acids Modify the Gating of Kv Channels

Cristina Moreno; Álvaro Macías; Ángela Prieto; Alicia de la Cruz; Carmen Valenzuela

Polyunsaturated fatty acids (PUFAs) have been reported to exhibit antiarrhythmic properties, which are attributed to their capability to modulate ion channels. This PUFAs ability has been reported to be due to their effects on the gating properties of ion channels. In the present review, we will focus on the role of PUFAs on the gating of two Kv channels, Kv1.5 and Kv11.1. Kv1.5 channels are blocked by n−3 PUFAs of marine [docosahexaenoic acid (DHA) and eicosapentaenoic acid] and plant origin (alpha-linolenic acid, ALA) at physiological concentrations. The blockade of Kv1.5 channels by PUFAs steeply increased in the range of membrane potentials coinciding with those of Kv1.5 channel activation, suggesting that PUFAs-channel binding may derive a significant fraction of its voltage sensitivity through the coupling to channel gating. A similar shift in the activation voltage was noted for the effects of n–6 arachidonic acid (AA) and DHA on Kv1.1, Kv1.2, and Kv11.1 channels. PUFAs-Kv1.5 channel interaction is time-dependent, producing a fast decay of the current upon depolarization. Thus, Kv1.5 channel opening is a prerequisite for the PUFA-channel interaction. Similar to the Kv1.5 channels, the blockade of Kv11.1 channels by AA and DHA steeply increased in the range of membrane potentials that coincided with the range of Kv11.1 channel activation, suggesting that the PUFAs-Kv channel interactions are also coupled to channel gating. Furthermore, AA regulates the inactivation process in other Kv channels, introducing a fast voltage-dependent inactivation in non-inactivating Kv channels. These results have been explained within the framework that AA closes voltage-dependent potassium channels by inducing conformational changes in the selectivity filter, suggesting that Kv channel gating is lipid dependent.


Chirality | 2012

Stereoselective interactions between local anesthetics and ion channels

Carmen Valenzuela; Cristina Moreno; Alicia de la Cruz; Álvaro Macías; Ángela Prieto; Teresa Gonzalez

Local anesthetics are useful probes of ion channel function and structure. Stereoselective interactions are especially interesting because they can reveal three-dimensional relationships between drugs and channels with otherwise identical biophysical and physicochemical properties. Furthermore, stereoselectivity suggests direct and specific receptor-mediated action, and identification of such stereospecific interactions may have important clinical consequences. The fact that drug targets are able to discriminate between the enantiomers present in a racemic drug is the consequence of the ordered asymmetric macromolecular units that form living cells. However, almost 25% of the drugs used in the clinical practice are racemic mixtures, and their individual enantiomers frequently differ in both their pharmacodynamic and pharmacokinetic profiles. Moreover, their effects can be similar to or different from the pharmacological effect of the drug and may contribute to the undesired effects of the drug. In other cases, the pharmacological effects induced by the two enantiomers on the molecular target are opposite. In the present manuscript, we will review the stereoselective effects of bupivacaine-like local anesthetics on cardiac sodium and potassium channels.


PLOS ONE | 2015

Elisidepsin Interacts Directly with Glycosylceramides in the Plasma Membrane of Tumor Cells to Induce Necrotic Cell Death.

José M. Molina-Guijarro; Carolina García; Álvaro Macías; Luis F. Garcia-Fernandez; Cristina Moreno; Fernando Reyes; Juan F. Martínez-Leal; Rogelio Fernández; Valentin Martinez; Carmen Valenzuela; M. Pilar Lillo; Carlos M. Galmarini

Plasma membrane integrity is essential for cell life. Any major break on it immediately induces the death of the affected cell. Different molecules were described as disrupting this cell structure and thus showing antitumor activity. We have previously defined that elisidepsin (Irvalec®, PM02734) inserts and self-organizes in the plasma membrane of tumor cells, inducing a rapid loss of membrane integrity, cell permeabilization and necrotic death. Here we show that, in sensitive HCT-116 colorectal cells, all these effects are consequence of the interaction of elisidepsin with glycosylceramides in the cell membrane. Of note, an elisidepsin-resistant subline (HCT-116-Irv) presented reduced levels of glycosylceramides and no accumulation of elisidepsin in the plasma membrane. Consequently, drug treatment did not induce the characteristic necrotic cell death. Furthermore, GM95, a mutant derivative from B16 mouse melanoma cells lacking ceramide glucosyltransferase (UGCG) activity and thus the synthesis of glycosylceramides, was also resistant to elisidepsin. Over-expression of UGCG gene in these deficient cells restored glycosylceramides synthesis, rendering them sensitive to elisidepsin, at a similar level than parental B16 cells. These results indicate that glycosylceramides act as membrane targets of elisidepsin, facilitating its insertion in the plasma membrane and the subsequent membrane permeabilization that leads to drug-induced cell death. They also indicate that cell membrane lipids are a plausible target for antineoplastic therapy.

Collaboration


Dive into the Cristina Moreno's collaboration.

Top Co-Authors

Avatar

Carmen Valenzuela

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alicia de la Cruz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Teresa Gonzalez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Álvaro Macías

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ángela Prieto

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge