Cristina Nowicki
University of Buenos Aires
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristina Nowicki.
Biochimica et Biophysica Acta | 2001
Cristina Nowicki; Giselle Reynoso Hunter; Marisa Montemartini-Kalisz; Wulf Blankenfeldt; Hans-Jürgen Hecht; Henryk M. Kalisz
The gene encoding tyrosine aminotransferase (TAT, EC 2.6.1.5) from the parasitic protozoan Trypanosoma cruzi was amplified from genomic DNA, cloned into the pET24a expression vector and functionally expressed as a C-terminally His-tagged protein in Escherichia coli BL21(DE3)pLysS. Purified recombinant TAT exhibited identical electrophoretic and enzymatic properties as the authentic enzyme from T. cruzi. Both recombinant and authentic T. cruzi TATs were highly resistant to limited tryptic cleavage and contained no disulfide bonds. Comprehensive analysis of its substrate specificity demonstrated TAT to be a broad substrate aminotransferase, with leucine, methionine as well as tyrosine, phenylalanine, tryptophan and alanine being utilized efficiently as amino donors. Valine, isoleucine and dicarboxylic amino acids served as poor substrates while polar aliphatic amino acids could not be transaminated. TAT also accepted several 2-oxoacids, including 2-oxoisocaproate and 2-oxomethiobutyrate, in addition to pyruvate, oxaloacetate and 2-oxoglutarate. The functionality of the expression system was confirmed by constructing two variants; one (Arg389) being a completely inactive enzyme; the other (Arg283) retaining its full activity, as predicted from the recently solved three-dimensional structure of T. cruzi TAT. Thus, only one of the two strictly conserved arginines which are essential for the enzymatic activity of subfamily Ialpha aspartate and aromatic aminotransferases is critical for T. cruzis TAT activity.
Fems Microbiology Letters | 2003
Javier Vernal; Juan José Cazzulo; Cristina Nowicki
We have previously reported that Leishmania mexicana promastigotes possess a broad substrate specificity aminotransferase (BSAT), able to transaminate aspartate, aromatic amino acids, methionine and leucine. We have confirmed now this unusual substrate specificity by cloning its gene and expressing in Escherichia coli the recombinant active protein. The amino acid sequence of BSAT shares over 40% identity with other eukaryotic and prokaryotic aspartate aminotransferases, thus showing that the enzyme belongs to the subfamily Ialpha of aminotransferases, and has only 6% identity with the tyrosine aminotransferase from Trypanosoma cruzi, which has a similar substrate specificity. The production of recombinant active enzyme in good yields opens up the possibility of obtaining its 3D-structure, in order to investigate the structural basis of the broad substrate specificity.
Molecular and Biochemical Parasitology | 2000
Giselle Reynoso Hunter; Ulf Hellman; Juan José Cazzulo; Cristina Nowicki
Two malate dehydrogenase isoforms, named MDH1 and MDH2, have been purified to homogeneity from Trypanosoma cruzi epimastigotes. Both enzymes consist of subunits with a molecular mass close to 33 kDa; native molecular mass determination by gel filtration, however, indicated that MDH1 is a dimer, whereas MDH2 is a tetramer. Both isoforms did not cross-react immunologically. The N-termini of both MDH isoforms and several tryptic peptides of MDH1 (amounting to about one third of the complete molecule) have been sequenced by automated Edman degradation. The tryptic digests of both enzymes have also been analysed by mass spectrometry (MALDI-TOF MS). The apparent Km values in both directions of the reaction have been determined, as well as the possible inhibition by excess of the substrate oxaloacetate. The sequence data, together with the pI values and the presence or absence of oxaloacetate inhibition indicate that the dimeric MDH1 is the mitochondrial isoenzyme, whereas the tetrameric MDH2 is the glycosomal isoenzyme. No evidence was found for the presence of a cytosolic isoform.
Molecular and Biochemical Parasitology | 1998
Javier Vernal; Juan José Cazzulo; Cristina Nowicki
A broad specificity aminotransferase (BSAT), with high activity with both, aromatic amino acids and aspartate as substrates, was purified to homogeneity from promastigotes of Leishmania mexicana by a method involving chromatography on DEAE-cellulose, Red-120-Sepharose and Mono Q, and gel filtration on Sephacryl S-200. The purified enzyme showed a single band in SDS-polyacrylamide gel electrophoresis, with an apparent molecular mass of 45 kDa. Since the apparent molecular mass of the native enzyme, determined by gel filtration, was 90 kDa, the native enzyme is a dimer of similar subunits. The amino acid composition was determined, as well as the sequence of four internal peptides obtained by tryptic digestion. Two of these peptides, consisting of 49 amino acid residues in total, showed high similarity (57%) with corresponding sequences of plant aspartate aminotransferases, whereas they had only 33% identity with the aromatic aminotransferase of Escherichia coli, and 16% identity with the tyrosine aminotransferase from the related parasite Trypanosoma cruzi. The BSAT contained only one 1/2 Cys residue per monomer. The optimal pH for the enzyme reaction, with tyrosine and alpha-oxoglutarate as substrates, was 7.0. The apparent Km values for tyrosine, phenylalanine, tryptophan and glutamate, with oxaloacetate as co-substrate, were 1.3, 0.9, 0.9 and 171.8 mM, respectively; the value for aspartate with alpha-oxoglutarate as co-substrate was 2.5 mM, and that for alanine with alpha-oxoglutarate as co-substrate was 216 mM. The values for pyruvate, alpha-oxoglutarate and oxaloacetate, with tyrosine as co-substrate, were 5.6, 0.71 and 0.12 mM, respectively. These results suggest that the enzyme is a broad-specificity aminotransferase, able to transaminate the aromatic amino acids, aspartate, and to a lower extent alanine, with high sequence similarity to aspartate aminotransferases.
Molecular and Biochemical Parasitology | 2009
Daniela Marciano; Dante Maugeri; Juan José Cazzulo; Cristina Nowicki
As part of a study on aminotransferases, genes coding for putative enzymes from Trypanosoma brucei and Leishmania major (alanine aminotransferases: ALATs, Tb927.1.3950 and LmjF12.0630; kynurenine aminotransferase: KAT, Tb10.389.1810; and tyrosine aminotransferase: TAT, LmjF36.2360) were cloned and functionally expressed in Escherichia coli. The putative T. brucei KAT, in fact coded for a glutamine aminotransferase (GlnAT), which exhibited a notably high affinity (in the micromolar range) towards glutamine and cysteine; in addition, like bacterial GlnATs and mammalian KATs, it was able to utilize different 2-oxoacids as amino acceptors. L. major TAT resembled T. cruzi TAT in substrate specificity, although the leishmanial enzyme did not exhibit ALAT activity. On the other hand, T. brucei ALAT, shortened by the first 65 amino acids assigned in the data bases, was functional and actively transaminated the substrate pair l-alanine and 2-oxoglutarate. Moreover in Western blots, the molecular size of the protein detected in crude extracts of T. brucei procyclics was identical to the value of the recombinant enzyme. Like T. brucei and T. cruzi orthologues, L. major ALAT displayed narrow substrate specificity. The leishmanial ALAT, like the T. cruzi enzyme, exhibited a dual subcellular localization, in the cytosol and in the mitochondrion. In line with the findings of comparative proteomic analyses of insect and mammalian stages of T. brucei and Leishmania parasites, our results also showed that T. cruzi ALAT is constitutively expressed, with remarkably higher levels being detected in amastigotes than in epimastigotes. ALATs are expressed in the clinically important stages of TriTryps, probably fulfilling an essential role, which deserves further studies.
Molecular and Biochemical Parasitology | 2008
Daniela Marciano; Constanza Llorente; Dante Maugeri; Candelaria de la Fuente; Frederik Opperdoes; Juan José Cazzulo; Cristina Nowicki
Three genes encoding putative aspartate aminotransferases (ASATs) were identified in the Trypanosoma cruzi genome. Two of these ASAT genes, presumably corresponding to a cytosolic and mitochondrial isoform, were cloned and expressed as soluble His-tagged proteins in Escherichia coli. The specific activities determined for both T. cruzi isozymes were notably higher than the values previously reported for Trypanosoma brucei orthologues. To confirm these differences, T. brucei mASAT and cASAT were also expressed as His-tagged enzymes. The kinetic analysis showed that the catalytic parameters of the new recombinant T. brucei ASATs were very similar to those determined for T. cruzi orthologues. The cASATs from both parasites displayed equally broad substrate specificities, while mASATs were highly specific towards aspartate/2-oxoglutarate. The subcellular localization of the mASAT was confirmed by digitonin extraction of intact epimastigotes. At the protein level, cASAT is constitutively expressed in T. brucei, whereas mASAT is down-regulated in the bloodstream forms. By contrast in T. cruzi, mASAT is expressed along the whole life cycle, whereas cASAT is specifically induced in the mammalian stages. Similarly, the expression of malate dehydrogenases (MDHs) is developmentally regulated in T. cruzi: while glycosomal MDH is only expressed in epimastigotes and mitochondrial MDH is present in the insect and mammalian stages. Taken together, these findings provide evidence for a metabolically active mitochondrion in the mammalian stages of T. cruzi, and suggest that the succinate excreted by amastigotes more likely represents a side product of an at least partially operative Krebs cycle, than an end product of glycosomal catabolism.
Fems Microbiology Letters | 1992
Cristina Nowicki; Marisa Montemartini; Vilma Gladys Duschak; José A. Santomé; Juan José Cazzulo
Cell-free extracts of epimastigotes of Trypanosoma cruzi contain tyrosine aminotransferase (TAT) and p-hydroxyphenyllactate dehydrogenase (pHPLDH). The TAT activity could be separated from aspartate aminotransferase (ASAT) by polyacrylamide gel electrophoresis or DEAE-cellulose chromatography; the latter procedure also allowed complete separation of pHPLDH. The subcellular localization of both T. cruzi enzymes, as determined by digitonin extraction, subcellular fractionation by differential centrifugation, and isopycnic ultracentrifugation in sucrose gradients, was mainly cytosolic, with low mitochondrial activities.
Molecular and Biochemical Parasitology | 2011
Alejandro Leroux; Dante Maugeri; Juan José Cazzulo; Cristina Nowicki
Trypanosoma cruzi exhibits two putative isocitrate dehydrogenases (IDHs). Both idh genes were cloned and the recombinant enzymes expressed in Escherichia coli. Our results showed that T. cruzi IDHs are strictly dependent on NADP(+) and display apparent affinities towards isocitrate and the coenzyme in the low micromolar range. In T. cruzi, IDHs are cytosolic and mitochondrial enzymes, and there is no evidence for the typical Krebs cycle-related NAD-dependent IDH. Hence, like in Trypanosoma brucei, the Krebs cycle is not a canonical route in T. cruzi. However, the citrate produced in the mitochondrion could be isomerized into isocitrate in the cytosol and the mitochondrion by means of the putative aconitase, which would provide the substrate for both IDHs. The cytosolic IDH is significantly more abundant in amastigotes, cell-derived and metacyclic trypomastigotes than in epimastigotes. This observation fits in well with the expected oxidative burst this pathogen has to face when infecting the mammalian host.
Molecular and Biochemical Parasitology | 1994
Marisa Montemartini; JoséA. Santomé; Juan José Cazzulo; Cristina Nowicki
An aromatic L-alpha-hydroxyacid dehydrogenase (AHADH) was purified to homogeneity from epimastigotes of Trypanosoma cruzi by a method involving chromatography on DEAE-cellulose, hydrophobic interaction chromatography on Phenyl-Sepharose and affinity chromatography on Affi-Gel Blue. The purified enzyme showed a single band in SDS-PAGE, with an apparent molecular mass of 36 kDa. Since the apparent molecular mass of the native enzyme, determined by gel filtration, is about 80 kDa, the native enzyme is a dimer of similar subunits. The amino acid composition was determined, as well as the sequences of 4 internal peptides obtained by CNBr cleavage at Met residues, and one peptide obtained after tryptic digestion. Three of the peptides presented considerable sequence similarity with the corresponding sequences of several malate dehydrogenases. The optimal pH for the enzyme reaction with p-hydroxyphenyl pyruvate and NADH as substrates was 7.5; that for the reverse reaction was 9.5. The apparent Km values for phenylpyruvate and p-hydroxyphenyl-pyruvate were 48 and 117 microM, respectively; that for L-phenyllactate in the reverse reaction was 420 microM. The enzyme was much less active with alpha-isocaproic acid as substrate, and other acids, including pyruvic and oxaloacetic, were not substrates at all. L-phenyllactic acid, but not the D-isomer, acted as substrate. The enzyme can therefore be considered as a general aromatic L-alpha-hydroxyacid dehydrogenase. The low apparent Km value for NADH (25 microM in the presence of phenylpyruvate) makes AHADH a candidate for the reoxidation of cytosolic NADH in T. cruzi.
Fems Microbiology Letters | 2011
Alejandro Leroux; Dante Maugeri; Frederik Opperdoes; Juan José Cazzulo; Cristina Nowicki
Comparative studies showed that, like Trypanosoma cruzi, Trypanosoma brucei exhibits functional cytosolic and mitochondrial malic enzymes (MEs), which are specifically linked to NADP. Kinetic studies provided evidence that T. cruzi and T. brucei MEs display similarly high affinities towards NADP(+) and are also almost equally efficient in catalyzing the production of NADPH. Nevertheless, in contrast to the cytosolic ME from T. cruzi, which is highly activated by l-aspartate (over 10-fold), the T. brucei homologue is slightly more active (50%) in the presence of this amino acid. In T. brucei, both isozymes appear to be clearly more abundant in the insect stage, although they can be immunodetected in the bloodstream forms. By contrast, in T. cruzi the expression of the mitochondrial ME seems to be clearly upregulated in amastigotes, whereas the cytosolic isoform appears to be more abundant in the insect stages of the parasite. It might be hypothesized that in those environments where glucose is very low or absent, these pathogens depend on NADP-linked dehydrogenases such as the MEs for NADPH production, as in those conditions the pentose phosphate pathway cannot serve as a source of essential reducing power.