Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Orsini is active.

Publication


Featured researches published by Cristina Orsini.


Neuroscience | 1997

Parallel strain-dependent effect of amphetamine on locomotor activity and dopamine release in the nucleus accumbens: An in vivo study in mice

A. Zocchi; Cristina Orsini; Simona Cabib; Stefano Puglisi-Allegra

Vulnerability to develop drug abuse could be related to differential sensitivity to some central effects of such drugs. Several results point to mesoaccumbens dopamine release elicited by psychostimulants as the rate-limiting factor of their reinforcing, hence addictive, effects and to locomotor stimulation as an indirect index of such a response. In this paper, we report parallel differences in sensitivity to amphetamine-induced locomotor stimulation and mesoaccumbens dopamine release in two inbred strains of mice characterized by differential susceptibility to develop drug self-administration. Thus, mice of the C57BL/6 strain responded with a simultaneous increase of locomotor activity and mesoaccumbens dopamine release measured by intracerebral microdialysis to amphetamine challenge. On the contrary, mice of the DBA/2 strain did not present either response. No strain differences in mesoaccumbens dopamine outflow or 3,4-dihydroxyphenylacetic acid concentration were found in basal conditions or following saline challenges. However, mice of the C57BL/6 strain were characterized by higher levels of accumbal homovanillic acid in basal conditions, in line with the results obtained in rats rendered more sensitive to the locomotor effects of psychostimulants by repeated administration. Finally, in both strains amphetamine decreased accumbal levels of the two metabolites. These results suggest that genotype modulates the locomotor effects of amphetamine through sensitivity of the mesoaccumbens system to amphetamine-stimulated dopamine release. Moreover, they provide a basis to test the hypothesis of mesoaccumbens dopamine involvement in individual susceptibility to the addictive effects of drugs by quantitative trait loci analysis in recombinant inbred strains.


Neuroscience | 2006

Habituation to the test cage influences amphetamine-induced locomotion and Fos expression and increases FosB/ΔFosB-like immunoreactivity in mice

David Conversi; A. Bonito-Oliva; Cristina Orsini; Simona Cabib

Pre-exposure to the testing cage (habituation or familiarization) is a common procedure aimed at reducing the interference of novelty-induced arousal and drug-independent individual differences on neural and behavioral measures. However, recent results suggest that this procedure might exert a major influence on the effects of addictive drugs. The present experiments tested the effects of repeated exposure to a test cage (1 h daily for four consecutive days) on amphetamine-induced locomotion and Fos expression as well as on FosB/DeltaFosB-like immunoreactivity in mice of the C57BL/6J and DBA/2J inbred strains that differ for the response to amphetamine, stress and novelty. Daily experiences with the test cage increased FosB/DeltaFosB-like immunoreactivity in the medial-prefrontal cortex of both strains of mice and in the caudate of mice of the C57 strain, as reported for repeated stress in the rat. Moreover, previous habituation to the test cage reduced the locomotor response to a low dose of amphetamine only in DBA mice while it reduced amphetamine-induced Fos expression in medial-prefrontal cortex, dorsal caudate and the accumbens shell of mice of the C57 strain. These results demonstrate indexes of stress-like plasticity in the brains of mice exposed to a procedure of familiarization to the testing environment. Moreover, they suggest that the procedure of daily familiarization influences the pattern of brain Fos expression induced by amphetamine. Finally, they indicate complex interactions between experience with the testing environment, genotype and drug.


Neurobiology of Learning and Memory | 2004

Selective improvement of strain-dependent performances of cognitive tasks by food restriction

Cristina Orsini; Francesca Buchini; David Conversi; Simona Cabib

Temporary food restriction affects strain differences for behavioral phenotypes in the inbred strains of mice C57BL/6 (C57) and DBA/2 (DBA). Since food restriction is a routine procedure to motivate learning, we evaluated its influence on differences for spatial and non-spatial discrimination between these strains of mice by using two non-associative tasks: the Spatial Novelty Test (SNT) and the Spontaneous Object Recognition Test (SORT). The results confirmed the poor performance of the DBA mice in SNT. Nonetheless, DBA mice were perfectly able to recognize the novel object in SORT. By contrast, C57 mice were good performers in SNT but failed to recognize a novel object in SORT. Finally, food restriction selectively improved C57 performance in SNT and DBA performance in SORT. These results support the view that a food restricting procedure enhances strain differences for discrimination of configurational information.


Genes, Brain and Behavior | 2010

Strain‐specific proportion of the two isoforms of the dopamine D2 receptor in the mouse striatum: associated neural and behavioral phenotypes

V. Colelli; Maria Teresa Fiorenza; D. Conversi; Cristina Orsini; Simona Cabib

Genetic variability in the proportion of the two alternative dopamine D2 receptor (D2R) mRNA splice variants, D2R‐long (D2L) and D2R‐short (D2S), influence corticostriatal functioning and could be implicated in liability to psychopathology. This study compared mesostriatal D2L/D2S ratios and associated neural and behavioral phenotypes in mice of the DBA/2J and C57BL/6J‐inbred strains, which differ for schizophrenia‐ and addiction‐like phenotypes. Results showed that DBA/2J mice lack the striatal predominance of D2L that has been reported in the rat and in C57BL/6J mice and confirmed in the latter strain by this study. Only C57BL/6J mice showed enhanced striatal c‐Fos expression under D1R and D2/3R co‐stimulation, indicating synergistic interaction between the subtypes of DA receptors. Instead, DBA/2J mice were characterized by opposing effects of D2/3R and D1R stimulation on striatal c‐Fos expression, in line with a more pronounced influence of D2S isoform, and did not express stereotyped climbing under D1R and D2/3R co‐stimulation, as reported for D2L−/− mice. Finally, strain‐specific modulation of c‐Fos expression by D1R and D2/3R co‐stimulation was selectively observed in striatal compartments receiving inputs from the prefrontal cortex and involved in the control of motivated behaviors. These results show differences in tissue‐specific D2R splicing in mice with intact genotypes and support a role for this phenotype in individual variability of corticostriatal functioning and in liability to psychopathology.


Physiology & Behavior | 2002

Predictable stress promotes place preference and low mesoaccumbens dopamine response

Cristina Orsini; Rossella Ventura; Franco Lucchese; Stefano Puglisi-Allegra; Simona Cabib

Aversive stimuli that are signaled, and therefore predictable, are preferred to unsignaled ones and promote less severe stress-related disturbances. Since stressful events are known to activate mesoaccumbens dopamine (DA) transmission, in the present experiments, we evaluated possible differences in mesoaccumbens DA response to predictable and unpredictable footshocks. Mice of the inbred strain DBA/2 were trained for conditioned place preference (CPP) in shuttle boxes. The procedure promoted significant preference for the compartment previously paired with predictable shocks (PR) to that paired with unpredictable shocks (NP). Mesoaccumbens levels of DA and its metabolites were therefore evaluated either after the first or the last (third) training session. A significant increase of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels were observed in animals exposed for the first time to the apparatus without shock delivery (SHAM) or to the PR and NP conditions compared with unhandled mice. There was no difference between PR and NP values, and DOPAC and HVA levels in both groups differed from those observable in the SHAM-exposed group. However, trained mice exposed to NP showed a significant elevation of DOPAC and HVA levels in comparison with those exposed to PR. These results show that information about predictability of aversive stimuli reduces central stress responses and suggest a possible relationship between reduced stressfulness and preference for predictable aversive experiences.


Psychopharmacology | 2001

Pharmacological evidence of muscarinic-cholinergic sensitization following chronic stress.

Cristina Orsini; Claudio Castellano; Simona Cabib

Abstract Rationale: Although much evidence supports a major role of brain cholinergic transmission in memory consolidation processes, little is known about cholinergic functioning under environmental pressure. Objectives: The present experiments were aimed at investigating possible functional adaptation of muscarinic receptors promoted by a chronic stressful procedure in an inbred strain of mice highly susceptible to stress. Methods: We tested the effects of post-trial administration of a cholinergic agonist and a muscarinic antagonist on the retention of a passive avoidance task in control animals and compared these effects with those observed following food restriction. Results: Food restriction enhanced the facilitatory effects of oxotremorine and reduced the impairing effects of atropine on memory consolidation. Conclusion: Our results support the view that chronic sensitization of muscarinic receptors occurs following chronic stress.


PLOS ONE | 2013

Behavioral and Neurochemical Characterization of New Mouse Model of Hyperphenylalaninemia

Tiziana Pascucci; Giacomo Giacovazzo; Alessandra Accoto; Elena Fiori; Rossella Ventura; Cristina Orsini; David Conversi; Claudia Carducci; Vincenzo Leuzzi; Stefano Puglisi-Allegra

Hyperphenylalaninemia (HPA) refers to all clinical conditions characterized by increased amounts of phenylalanine (PHE) in blood and other tissues. According to their blood PHE concentrations under a free diet, hyperphenylalaninemic patients are commonly classified into phenotypic subtypes: classical phenylketonuria (PKU) (PHE > 1200 µM/L), mild PKU (PHE 600-1200 µM/L) and persistent HPA (PHE 120-600 µM/L) (normal blood PHE < 120 µM/L). The current treatment for hyperphenylalaninemic patients is aimed to keep blood PHE levels within the safe range of 120-360 µM/L through a PHE-restricted diet, difficult to achieve. If untreated, classical PKU presents variable neurological and mental impairment. However, even mildly elevated blood PHE levels, due to a bad compliance to dietary treatment, produce cognitive deficits involving the prefrontal cortical areas, extremely sensible to PHE-induced disturbances. The development of animal models of different degrees of HPA is a useful tool for identifying the metabolic mechanisms underlying cognitive deficits induced by PHE. In this paper we analyzed the behavioral and biochemical phenotypes of different forms of HPA (control, mild-HPA, mild-PKU and classic-PKU), developed on the base of plasma PHE concentrations. Our results demonstrated that mice with different forms of HPA present different phenotypes, characterized by increasing severity of behavioral symptoms and brain aminergic deficits moving from mild HPA to classical PKU forms. In addition, our data identify preFrontal cortex and amygdala as the most affected brain areas and confirm the highest susceptibility of brain serotonin metabolism to mildly elevated blood PHE.


Behavioural Brain Research | 2015

Evidence for the involvement of extinction-associated inhibitory learning in the forced swimming test

P. Campus; V. Colelli; Cristina Orsini; D. Sarra; Simona Cabib

The forced swimming test (FST) remains one of the most used tools for screening antidepressants in rodent models. Nonetheless, the nature of immobility, its main behavioral measure, is still a matter of debate. The present study took advantage of our recent finding that mice of the inbred DBA/2J strain require a functioning left dorsolateral striatum (DLS) to consolidate long-term memory of FST to test whether immobility is the outcome of stress-related learning. Infusion of the GABA-A agonist muscimol in the left DLS immediately after a single experience of FST prevented and infusion in the left or the right amygdala impaired recall of the acquired levels of immobility in a probe test performed 24h later. Post-training left DLS infusion of muscimol, at a dose capable of preventing retention of FST-induced immobility, did not influence 24h retention of inhibitory avoidance training or of the escape response acquired in a water T-maze. However, this same treatment prevented 24h retention of the extinction training of the consolidated escape response. These results indicate that a left DLS-centered memory system selectively mediates memory consolidation of FST and of escape extinction and support the hypothesis that immobility is the result of extinction-like inhibitory learning involving all available escape responses due to the inescapable/unavoidable nature of FST experience.


Neurobiology of Learning and Memory | 2014

Either the dorsal hippocampus or the dorsolateral striatum is selectively involved in consolidation of forced swim-induced immobility depending on genetic background.

V. Colelli; P. Campus; David Conversi; Cristina Orsini; Simona Cabib

Healthy subjects differ in the memory system they engage to learn dual-solution tasks. Both genotype and stress experience could contribute to this phenotypic variability. The present experiments tested whether the hippocampus and the dorsal striatum, the core nodes of two different memory systems, are differently involved in 24 h retention of a stress-associated memory in two genetically unrelated inbred strains of mice. Mice from both the C57BL/6J and the DBA/2J inbred strains showed progressive increase of immobility during 10 min exposure to forced swim (FS) and retrieved the acquired levels of immobility when tested 24h later. The pattern of c-fos immunostaining promoted by FS revealed activation of a large number of brain areas in both strains, including CA1 and CA3 fields of the hippocampus. However, only DBA/2J mice showed activation of the dorsolateral striatum (DLS). In addition, FS induced a positive correlation between c-fos expression in the amygdala and CA1 and CA3 in C57BL/6J mice whereas it induced a positive correlation between c-fos expression in the amygdala and DLS in DBA/2J mice. Finally, temporary post-training inactivation of the dorsal hippocampus, by local infusion of lidocaine, prevented 24h retention of immobility in C57BL/6J mice only, whereas inactivation of the DLS prevented retention in DBA/2J mice only. These findings support the view that genetic factors can determine whether the dorsal hippocampus or the DLS are selectively engaged to consolidate stress-related memory.


Behavioural Brain Research | 2011

Association between striatal accumulation of FosB/ΔFosB and long-term psychomotor sensitization to amphetamine in mice depends on the genetic background

David Conversi; Cristina Orsini; V. Colelli; F. Cruciani; Simona Cabib

Previous results demonstrated association between increased FosB/ΔFosB immunostaining in the ventromedial striatum and behavioral sensitization to amphetamine promoted by repeated stress or by repeated pairings of the psychostimulant and the testing cage in mice of the C57BL/6J strain. The present experiments tested this association in an additional protocol, its stability following the end of the sensitizing procedure and its generalization to mice from a different inbred strain. Eleven days after repeated administration of amphetamine within their home-cages, mice of the C57BL/6J strain expressed sensitization to the psychomotor effects of the psychostimulant when tested in a novel cage. At this time-point the same mice showed increased FosB/ΔFosB immunostaining in the ventromedial striatum. Instead, mice of the genetically unrelated DBA/2J inbred strain expressing robust sensitization in the same protocol did not show changes in FosB/ΔFosB immunostaining throughout the striatal complex. Lack of effects in FosB/ΔFosB immunostaining was also observed in DBA/2J mice behaviorally sensitized by repeated pairings of amphetamine with the test cage. These results demonstrate that mice, depending on the genetic background, can develop robust and long-lasting behavioral sensitization to amphetamine in the absence of striatal ΔFosB accumulation.

Collaboration


Dive into the Cristina Orsini's collaboration.

Top Co-Authors

Avatar

Simona Cabib

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

David Conversi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Campus

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Rossella Ventura

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

V. Colelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

A. Bonito-Oliva

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francesca Buchini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

M. Maiolati

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge