Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Papayannidis is active.

Publication


Featured researches published by Cristina Papayannidis.


Blood | 2009

Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP)

Ilaria Iacobucci; Clelia Tiziana Storlazzi; Daniela Cilloni; Annalisa Lonetti; Emanuela Ottaviani; Simona Soverini; Annalisa Astolfi; Sabina Chiaretti; Antonella Vitale; Francesca Messa; Luciana Impera; Carmen Baldazzi; Pietro D'Addabbo; Cristina Papayannidis; Angelo Lonoce; Sabrina Colarossi; Marco Vignetti; Pier Paolo Piccaluga; Stefania Paolini; Domenico Russo; Fabrizio Pane; Giuseppe Saglio; Michele Baccarani; Robin Foà; Giovanni Martinelli

The BCR-ABL1 fusion gene defines the subgroup of acute lymphoblastic leukemia (ALL) with the worst clinical prognosis. To identify oncogenic lesions that combine with BCR-ABL1 to cause ALL, we used Affymetrix Genome-Wide Human SNP arrays (250K NspI and SNP 6.0), fluorescence in situ hybridization, and genomic polymerase chain reaction to study 106 cases of adult BCR-ABL1-positive ALL. The most frequent somatic copy number alteration was a focal deletion on 7p12 of IKZF1, which encodes the transcription factor Ikaros and was identified in 80 (75%) of 106 patients. Different patterns of deletions occurred, but the most frequent were those characterized by a loss of exons 4 through 7 (Delta4-7) and by removal of exons 2 through 7 (Delta2-7). A variable number of nucleotides (patient specific) were inserted at the conjunction and maintained with fidelity at the time of relapse. The extent of the Delta4-7 deletion correlated with the expression of a dominant-negative isoform with cytoplasmic localization and oncogenic activity, whereas the Delta2-7 deletion resulted in a transcript lacking the translation start site. The IKZF1 deletion also was identified in the progression of chronic myeloid leukemia to lymphoid blast crisis (66%) but never in myeloid blast crisis or chronic-phase chronic myeloid leukemia or in patients with acute myeloid leukemia. Known DNA sequences and structural features were mapped along the breakpoint cluster regions, including heptamer recombination signal sequences recognized by RAG enzymes during V(D)J recombination, suggesting that IKZF1 deletions could arise from aberrant RAG-mediated recombination.


Blood | 2009

Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors.

Simona Soverini; Alessandra Gnani; Sabrina Colarossi; Fausto Castagnetti; Elisabetta Abruzzese; Stefania Paolini; Serena Merante; Ester Orlandi; Silvia De Matteis; Antonella Gozzini; Ilaria Iacobucci; Francesca Palandri; Gabriele Gugliotta; Cristina Papayannidis; Angela Poerio; Marilina Amabile; Daniela Cilloni; Gianantonio Rosti; Michele Baccarani; Giovanni Martinelli

Dasatinib and nilotinib are tyrosine kinase inhibitors (TKIs) developed to overcome imatinib resistance in Philadelphia-positive leukemias. To assess how Bcr-Abl kinase domain mutation status evolves during sequential therapy with these TKIs and which mutations may further develop and impair their efficacy, we monitored the mutation status of 95 imatinib-resistant patients before and during treatment with dasatinib and/or nilotinib as second or third TKI. We found that 83% of cases of relapse after an initial response are associated with emergence of newly acquired mutations. However, the spectra of mutants conferring resistance to dasatinib or nilotinib are small and nonoverlapping, except for T315I. Patients already harboring mutations had higher likelihood of relapse associated with development of further mutations compared with patients who did not harbor mutations (23 of 51 vs 8 of 44, respectively, for patients who relapsed on second TKI; 13 of 20 vs 1 of 6, respectively, for patients who relapsed on third TKI).


Blood | 2013

Unraveling the complexity of tyrosine kinase inhibitor-resistant populations by ultra-deep sequencing of the BCR-ABL kinase domain

Simona Soverini; Caterina De Benedittis; Katerina Machova Polakova; David S. Horner; Michele Iacono; Fausto Castagnetti; Gabriele Gugliotta; Francesca Palandri; Cristina Papayannidis; Ilaria Iacobucci; Claudia Venturi; Maria Teresa Bochicchio; Hana Klamová; Federica Cattina; Domenico Russo; Paola Bresciani; Gianni Binotto; Barbara Giannini; Alexander Kohlmann; Torsten Haferlach; Andreas Roller; Gianantonio Rosti; Michele Cavo; Michele Baccarani; Giovanni Martinelli

In chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia, tyrosine kinase inhibitor (TKI) therapy may select for drug-resistant BCR-ABL mutants. We used an ultra-deep sequencing (UDS) approach to resolve qualitatively and quantitatively the complexity of mutated populations surviving TKIs and to investigate their clonal structure and evolution over time in relation to therapeutic intervention. To this purpose, we performed a longitudinal analysis of 106 samples from 33 patients who had received sequential treatment with multiple TKIs and had experienced sequential relapses accompanied by selection of 1 or more TKI-resistant mutations. We found that conventional Sanger sequencing had misclassified or underestimated BCR-ABL mutation status in 55% of the samples, where mutations with 1% to 15% abundance were detected. A complex clonal texture was uncovered by clonal analysis of samples harboring multiple mutations and up to 13 different mutated populations were identified. The landscape of these mutated populations was found to be highly dynamic. The high degree of complexity uncovered by UDS indicates that conventional Sanger sequencing might be an inadequate tool to assess BCR-ABL kinase domain mutation status, which currently represents an important component of the therapeutic decision algorithms. Further evaluation of the clinical usefulness of UDS-based approaches is warranted.


Blood | 2008

Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance

Ilaria Iacobucci; Annalisa Lonetti; Francesca Messa; Daniela Cilloni; Francesca Arruga; Emanuela Ottaviani; Stefania Paolini; Cristina Papayannidis; Pier Paolo Piccaluga; Panagiota Giannoulia; Simona Soverini; Marilina Amabile; Angela Poerio; Giuseppe Saglio; Fabrizio Pane; Giorgio Berton; Anna Baruzzi; Antonella Vitale; Sabina Chiaretti; Giovanni Perini; Robin Foà; Michele Baccarani; Giovanni Martinelli

Ikaros plays an important role in the control of differentiation and proliferation of all lymphoid lineages. The expression of short isoforms lacking DNA-binding motifs alters the differentiation capacities of hematopoietic progenitors, arresting lineage commitment. We sought to determine whether molecular abnormalities involving the IKZF1 gene were associated with resistance to tyrosine kinase inhibitors (TKIs) in Ph+ acute lymphoblastic leukemia (ALL) patients. Using reverse-transcribed polymerase chain reaction, cloning, and nucleotide sequencing, only the non-DNA-binding Ik6 isoform was detected in 49% of Ph+ ALL patients. Ik6 was predominantly localized to the cytoplasm versus DNA-binding Ik1 or Ik2 isoforms, which showed nuclear localization. There was a strong correlation between nonfunctional Ikaros isoforms and BCR-ABL transcript level. Furthermore, patient-derived leukemia cells expressed oncogenic Ikaros isoforms before TKI treatment, but not during response to TKIs, and predominantly at the time of relapse. In vitro overexpression of Ik6 strongly increased DNA synthesis and inhibited apoptosis in TKI-sensitive cells. Genomic sequence and computational analyses of exon splice junction regions of IKZF1 in Ph+ ALL patients predicted several mutations that may alter alternative splicing. These results establish a previously unknown link between specific molecular defects that involve alternative splicing of the IKZF1 gene and the resistance to TKIs in Ph+ ALL patients.


Haematologica | 2011

Philadelphia-positive acute lymphoblastic leukemia patients already harbor BCR-ABL kinase domain mutations at low levels at the time of diagnosis

Simona Soverini; Antonella Vitale; Angela Poerio; Alessandra Gnani; Sabrina Colarossi; Ilaria Iacobucci; Giuseppe Cimino; Loredana Elia; Annalisa Lonetti; Marco Vignetti; Stefania Paolini; Giovanna Meloni; Valeria Di Maio; Cristina Papayannidis; Marilina Amabile; Anna Guarini; Michele Baccarani; Giovanni Martinelli; Robin Foà

Background In patients with Philadelphia-positive acute lymphoblastic leukemia, resistance to treatment with tyrosine kinase inhibitors is frequent and most often associated with the development of point mutations in the BCR-ABL kinase domain. We aimed to assess: (i) in how many patients BCR-ABL kinase domain mutations are already detectable at relatively low levels at the time of diagnosis, and (ii) whether mutation detection correlates with subsequent response to therapy. Design and Methods We retrospectively analyzed samples collected at diagnosis from 15 patients with Philadelphia-positive acute lymphoblastic leukemia who subsequently received tyrosine kinase inhibitor therapy (dasatinib) by cloning the BCR-ABL kinase domain in a bacterial vector and sequencing 200 independent clones per sample. Results Mutations at relatively low levels (2–4 clones out of 200) could be detected in all patients – eight who relapsed and seven who achieved persistent remission. Each patient had evidence of two to eight different mutations, the majority of which have never been reported in association with resistance to tyrosine kinase inhibitors. In two patients out of six who relapsed because of a mutation, the mutation (a T315I) was already detectable in a few clones at the time of diagnosis. On the other hand, a patient who was found to harbor an F317L mutation is in persistent remission on dasatinib. Conclusions Our results suggest that the BCR-ABL kinase domain is prone to randomly accumulate point mutations in Philadelphia-positive acute lymphoblastic leukemia, although the presence of these mutations in a relatively small leukemic subclone does not always preclude a primary response to tyrosine kinase inhibitors.


Cancer | 2013

Stage I of a phase 2 study assessing the efficacy, safety, and tolerability of barasertib (AZD1152) versus low-dose cytosine arabinoside in elderly patients with acute myeloid leukemia

Hagop M. Kantarjian; Giovanni Martinelli; Elias Jabbour; Alfonso Quintás-Cardama; Kiyoshi Ando; Jacquesolivier Bay; Andrew Wei; Stefanie Gröpper; Cristina Papayannidis; Kate Owen; Laura Pike; Nicola Schmitt; Paul Stockman; Aristoteles Giagounidis

In this phase 2 study, the authors evaluated the efficacy, safety, and tolerability of the Aurora B kinase inhibitor barasertib compared with low‐dose cytosine arabinoside (LDAC) in patients aged ≥60 years with acute myeloid leukemia (AML).


Leukemia Research | 2011

A polymorphism in the chromosome 9p21 ANRIL locus is associated to Philadelphia positive acute lymphoblastic leukemia

Ilaria Iacobucci; Marco Sazzini; Paolo Garagnani; Anna Ferrari; Alessio Boattini; Annalisa Lonetti; Cristina Papayannidis; Vilma Mantovani; Elena Marasco; Emanuela Ottaviani; Simona Soverini; Domenico Girelli; Donata Luiselli; Marco Vignetti; Michele Baccarani; Giovanni Martinelli

Little is known about alterations of cyclin dependent kinase inhibitors p15INK4B, p16INK4A and of MDM2 inhibitor p14ARF due to single nucleotide polymorphisms (SNPs) located within the CDKN2A/B genes and/or neighbouring loci. In order to investigate the potential involvement of such common DNA sequence variants in leukemia susceptibility, an association study was performed by genotyping 23 SNPs spanning the MTAP, CDKN2A/B and CDKN2BAS loci, as well as relative intergenic regions, in a case-control cohort made up of 149 leukemia patients, including Philadelphia positive (Ph(+)) acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) samples, and 183 healthy controls. rs564398, mapping to the CDKN2BAS locus that encodes for ANRIL antisense non-coding RNA, showed a statistically significant correlation with the ALL phenotype, with a risk pattern that was compatible with an overdominant model of disease susceptibility and a OR of 2 (95% CI, 1.20-3.33; p=7.1×10(-3)). We hypothesized that this association reflects the capability of some ANRIL polymorphisms to contribute to its transcription changes responsible for alterations of CDKN2A/B expression profiles, thus leading to abnormal proliferative boosts and consequent increased ALL susceptibility.


PLOS ONE | 2012

IKAROS deletions dictate a unique gene expression signature in patients with adult B-cell acute lymphoblastic leukemia.

Ilaria Iacobucci; Nunzio Iraci; Monica Messina; Annalisa Lonetti; Sabina Chiaretti; Emanuele Valli; Anna Ferrari; Cristina Papayannidis; Francesca Paoloni; Antonella Vitale; Clelia Tiziana Storlazzi; Emanuela Ottaviani; Viviana Guadagnuolo; Sandra Durante; Marco Vignetti; Simona Soverini; Fabrizio Pane; Robin Foà; Michele Baccarani; Markus Müschen; Giovanni Perini; Giovanni Martinelli

Background Deletions of IKAROS (IKZF1) frequently occur in B-cell precursor acute lymphoblastic leukemia (B-ALL) but the mechanisms by which they influence pathogenesis are unclear. To address this issue, a cohort of 144 adult B-ALL patients (106 BCR-ABL1-positive and 38 B-ALL negative for known molecular rearrangements) was screened for IKZF1 deletions by single nucleotide polymorphism (SNP) arrays; a sub-cohort of these patients (44%) was then analyzed for gene expression profiling. Principal Findings Total or partial deletions of IKZF1 were more frequent in BCR-ABL1-positive than in BCR-ABL1-negative B-ALL cases (75% vs 58%, respectively, p = 0.04). Comparison of the gene expression signatures of patients carrying IKZF1 deletion vs those without showed a unique signature featured by down-regulation of B-cell lineage and DNA repair genes and up-regulation of genes involved in cell cycle, JAK-STAT signalling and stem cell self-renewal. Through chromatin immunoprecipitation and luciferase reporter assays we corroborated these findings both in vivo and in vitro, showing that Ikaros deleted isoforms lacked the ability to directly regulate a large group of the genes in the signature, such as IGLL1, BLK, EBF1, MSH2, BUB3, ETV6, YES1, CDKN1A (p21), CDKN2C (p18) and MCL1. Conclusions Here we identified and validated for the first time molecular pathways specifically controlled by IKZF1, shedding light into IKZF1 role in B-ALL pathogenesis.


Journal of Clinical Oncology | 2017

Complete hematologic and molecular response in adult patients with relapsed/refractory philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study

Giovanni Martinelli; Nicolas Boissel; Patrice Chevallier; Oliver G. Ottmann; Nicola Gökbuget; Max S. Topp; Adele K. Fielding; Alessandro Rambaldi; Ellen K. Ritchie; Cristina Papayannidis; Lulu Ren Sterling; Jonathan Benjamin; Anthony S. Stein

Purpose Few therapeutic options are available for patients with Philadelphia chromosome-positive (Ph+) B-precursor acute lymphoblastic leukemia (ALL) who progress after failure of tyrosine kinase inhibitor (TKI) -based therapy. Here, we evaluated the efficacy and tolerability of blinatumomab in patients with relapsed or refractory Ph+ ALL. Patients and Methods This open-label phase II study enrolled adults with Ph+ ALL who had relapsed after or were refractory to at least one second-generation or later TKI or were intolerant to second-generation or later TKIs and intolerant or refractory to imatinib. Blinatumomab was administered in 28-day cycles by continuous intravenous infusion. The primary end point was complete remission (CR) or CR with partial hematologic recovery (CRh) during the first two cycles. Major secondary end points included minimal residual disease response, rate of allogeneic hematopoietic stem-cell transplantation, relapse-free survival, overall survival, and adverse events (AEs). Results Of 45 patients, 16 (36%; 95% CI, 22% to 51%) achieved CR/CRh during the first two cycles, including four of 10 patients with the T315I mutation; 88% of CR/CRh responders achieved a complete minimal residual disease response. Seven responders (44%) proceeded to allogeneic hematopoietic stem-cell transplantation, including 55% (six of 11) of transplantation-naïve responders. Median relapse-free survival and overall survival were 6.7 and 7.1 months, respectively. The most frequent AEs were pyrexia (58%), febrile neutropenia (40%), and headache (31%). Three patients had cytokine release syndrome (all grade 1 or 2), and three patients had grade 3 neurologic events, one of which (aphasia) required temporary treatment interruption. There were no grade 4 or 5 neurologic events. Conclusion Single-agent blinatumomab showed antileukemia activity in high-risk patients with Ph+ ALL who had relapsed or were refractory to TKIs. AEs were consistent with previous experience in Ph- ALL.


Haematologica | 2010

The PAX5 gene is frequently rearranged in BCR-ABL1-positive acute lymphoblastic leukemia but is not associated with outcome. A report on behalf of the GIMEMA Acute Leukemia Working Party

Ilaria Iacobucci; Annalisa Lonetti; Francesca Paoloni; Cristina Papayannidis; Anna Ferrari; Clelia Tiziana Storlazzi; Marco Vignetti; Daniela Cilloni; Francesca Messa; Viviana Guadagnuolo; Stefania Paolini; Loredana Elia; Monica Messina; Antonella Vitale; Giovanna Meloni; Simona Soverini; Fabrizio Pane; Michele Baccarani; Robin Foà; Giovanni Martinelli

Background Recently, in genome-wide analyses of DNA copy number abnormalities using single nucleotide polymorphism microarrays, genetic alterations targeting PAX5 were identified in over 30% of pediatric patients with acute lymphoblastic leukemia. So far the occurrence of PAX5 alterations and their clinical correlation have not been investigated in adults with BCR-ABL1-positive acute lymphoblastic leukemia. Design and Methods The aim of this study was to characterize the rearrangements on 9p involving PAX5 and their clinical significance in adults with BCR-ABL1-positive acute lymphoblastic leukemia. Eighty-nine adults with de novo BCR-ABL1-positive acute lymphoblastic leukemia were enrolled into institutional (n=15) or GIMEMA (Gruppo Italiano Malattie EMatologiche dell’Adulto) (n=74) clinical trials and, after obtaining informed consent, their genome was analyzed by single nucleotide polymorphism arrays (Affymetrix 250K NspI and SNP 6.0), genomic polymerase chain reaction analysis and re-sequencing. Results PAX5 genomic deletions were identified in 29 patients (33%) with the extent of deletions ranging from a complete loss of chromosome 9 to the loss of a subset of exons. In contrast to BCR-ABL1-negative acute lymphoblastic leukemia, no point mutations were found, suggesting that deletions are the main mechanism of inactivation of PAX5 in BCR-ABL1-positive acute lymphoblastic leukemia. The deletions were predicted to result in PAX5 haploinsufficiency or expression of PAX5 isoforms with impaired DNA-binding. Deletions of PAX5 were not significantly correlated with overall survival, disease-free survival or cumulative incidence of relapse, suggesting that PAX5 deletions are not associated with outcome. Conclusions PAX5 deletions are frequent in adult BCR-ABL1-positive acute lymphoblastic leukemia and are not associated with a poor outcome.

Collaboration


Dive into the Cristina Papayannidis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge