Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Quintavalle is active.

Publication


Featured researches published by Cristina Quintavalle.


European Heart Journal | 2008

Contrast agents and renal cell apoptosis

Giulia Romano; Carlo Briguori; Cristina Quintavalle; Ciro Zanca; Natalia V. Rivera; Antonio Colombo; Gerolama Condorelli

AIMS Contrast media (CM) induce a direct toxic effect on renal tubular cells. This toxic effect may have a role in the pathophysiology of contrast nephropathy. METHODS AND RESULTS We evaluated (i) the cytotoxicity of CM [both low-osmolality (LOCM) and iso-osmolality (IOCM)], of iodine alone, and of an hyperosmolar solution (mannitol 8%) on human embryonic kidney (HEK 293), porcine proximal renal tubular (LLC-PK1), and canine Madin-Darby distal tubular renal (MDCK) cells; and (ii) the effectiveness of various antioxidant compounds [n-acetylcysteine (NAC), ascorbic acid and sodium bicarbonate] in preventing CM cytotoxicity. The cytotoxicity of CM was assessed at different time points, with different methods: cell viability, DNA laddering, flow cytometry, and caspase activation. Both LOCM and IOCM produced a concentration- and time-dependent increase in cell death as assessed by the different methods. On the contrary, iodine alone and hyperosmolar solution did not induce any significant cytotoxic effect. There was not any significant difference in the cytotoxic effect between LOCM and IOCM. Furthermore, both LOCM and IOCM caused a marked increase in caspase-3 and -9 activities and poly(ADP-ribose) fragmentation, while no effect on caspase-8/-10 was observed, thus indicating that the CM activated apoptosis mainly through the intrinsic pathway. Both CM induced an increase in protein expression levels of pro-apoptotic members of the Bcl2 family (Bim and Bad). NAC and ascorbic acid but not sodium bicarbonate had a dose-dependent protective effect on renal cells after 3 h incubation with high dose (200 mg iodine/mL) of both LOCM and IOCM. CONCLUSION Both LOCM and IOCM induce a dose-dependent renal cell apoptosis. NAC and ascorbic acid but not sodium bicarbonate prevent this contrast-induced apoptosis.


Circulation | 2012

Impact of a High Loading Dose of Atorvastatin on Contrast-Induced Acute Kidney Injury

Cristina Quintavalle; Danilo Fiore; Francesca De Micco; Gabriella Visconti; Amelia Focaccio; Bruno Golia; Bruno Ricciardelli; Elvira Donnarumma; Antonio C. Bianco; Maria Assunta Zabatta; Giancarlo Troncone; Antonio Colombo; Carlo Briguori; Gerolama Condorelli

Background— The role of statins in the prevention of contrast-induced acute kidney injury (CIAKI) is controversial. Methods and Results— First, we investigated the in vivo effects of atorvastatin on CIAKI. Patients with chronic kidney disease enrolled in the Novel Approaches for Preventing or Limiting Events (NAPLES) II trial were randomly assigned to (1) the atorvastatin group (80 mg within 24 hours before contrast media [CM] exposure; n=202) or (2) the control group (n=208). All patients received a high dose of N-acetylcysteine and sodium bicarbonate solution. Second, we investigated the in vitro effects of atorvastatin pretreatment on CM-mediated modifications of intracellular pathways leading to apoptosis or survival in renal tubular cells. CIAKI (ie, an increase >10% of serum cystatin C concentration within 24 hours after CM exposure) occurred in 9 of 202 patients in the atorvastatin group (4.5%) and in 37 of 208 patients in the control group (17.8%) (P=0.005; odds ratio=0.22; 95% confidence interval, 0.07–0.69). CIAKI rate was lower in the atorvastatin group in both diabetics and nondiabetics and in patients with moderate chronic kidney disease (estimated glomerular filtration rate, 31–60 mL/min per 1.73 m2). In the in vitro model, pretreatment with atorvastatin (1) prevented CM-induced renal cell apoptosis by reducing stress kinases activation and (2) restored the survival signals (mediated by Akt and ERK pathways). Conclusions— A single high loading dose of atorvastatin administered within 24 hours before CM exposure is effective in reducing the rate of CIAKI. This beneficial effect is observed only in patients at low to medium risk.


Cancer Research | 2010

miR-212 Increases Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Sensitivity in Non–Small Cell Lung Cancer by Targeting the Antiapoptotic Protein PED

Mariarosaria Incoronato; Michela Garofalo; Loredana Urso; Giulia Romano; Cristina Quintavalle; Ciro Zanca; Margherita Iaboni; Gerald Nuovo; Carlo M. Croce; Gerolama Condorelli

PED/PEA-15 (PED) is a death effector domain family member of 15 kDa with a broad antiapoptotic function found overexpressed in a number of different human tumors, including lung cancer. To date, the mechanisms that regulate PED expression are unknown. Therefore, we address this point by the identification of microRNAs that in non-small cell lung cancer (NSCLC) modulate PED levels. In this work, we identify miR-212 as a negative regulator of PED expression. We also show that ectopic expression of this miR increases tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cell death in NSCLC cells. In contrast, inhibition of endogenous miR-212 by use of antago-miR results in increase of PED protein expression and resistance to TRAIL treatment. Besides, in NSCLC, we show both in vitro and in vivo that PED and miR-212 expressions are inversely correlated, that is, PED is upregulated and miR-212 is rarely expressed. In conclusion, these findings suggest that miR-212 should be considered as a tumor suppressor because it negatively regulates the antiapoptotic protein PED and regulates TRAIL sensitivity.


Oncogene | 2013

Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells

Cristina Quintavalle; Elvira Donnarumma; Margherita Iaboni; Giuseppina Roscigno; Michela Garofalo; Giulia Romano; Danilo Fiore; P De Marinis; Carlo M. Croce; Gerolama Condorelli

Glioblastoma is the most frequent brain tumor in adults and is the most lethal form of human cancer. Despite the improvements in treatments, survival of patients remains poor. To define novel pathways that regulate susceptibility to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in glioma, we have performed genome-wide expression profiling of microRNAs (miRs). We show that in TRAIL-resistant glioma cells, levels of different miRs are increased, and in particular, miR-30b/c and -21. We demonstrate that these miRs impair TRAIL-dependent apoptosis by inhibiting the expression of key functional proteins. T98G-sensitive cells treated with miR-21 or -30b/c become resistant to TRAIL. Furthermore, we demonstrate that miR-30b/c and miR-21 target respectively the 3′ untranslated region of caspase-3 and TAp63 mRNAs, and that those proteins mediate some of the effects of miR-30 and -21 on TRAIL resistance, even in human glioblastoma primary cells and in lung cancer cells. In conclusion, we show that high expression levels of miR-21 and -30b/c are needed to maintain the TRAIL-resistant phenotype, thus making these miRs as promising therapeutic targets for TRAIL resistance in glioma.


Cell Death and Disease | 2011

In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis

Cristina Quintavalle; M Brenca; F De Micco; Danilo Fiore; S Romano; M F Romano; F Apone; Antonio C. Bianco; M A Zabatta; Giancarlo Troncone; Carlo Briguori; Gianluigi Condorelli

Contrast-induced nephropathy accounts for >10% of all causes of hospital-acquired renal failure, causes a prolonged in-hospital stay and represents a powerful predictor of poor early and late outcome. Mechanisms of contrast-induced nephropathy are not completely understood. In vitro data suggests that contrast media (CM) induces a direct toxic effect on renal tubular cells through the activation of the intrinsic apoptotic pathway. It is unclear whether this effect has a role in the clinical setting. In this work, we evaluated the effects of CM both in vivo and in vitro. By analyzing urine samples obtained from patients who experienced contrast-induced acute kidney injury (CI-AKI), we verified, by western blot and immunohistochemistry, that CM induces tubular renal cells apoptosis. Furthermore, in cultured cells, CM caused a dose–response increase in reactive oxygen species (ROS) production, which triggered Jun N-terminal kinases (JNK1/2) and p38 stress kinases marked activation and thus apoptosis. Inhibition of JNK1/2 and p38 by different approaches (i.e. pharmacological antagonists and transfection of kinase-death mutants of the upstream p38 and JNK kinases) prevented CM-induced apoptosis. Interestingly, N-acetylcysteine inhibited ROS production, and thus stress kinases and apoptosis activation. Therefore, we conclude that CM-induced tubular renal cells apoptosis represents a key mechanism of CI-AKI.


PLOS ONE | 2011

Epigenetic Regulation of miR-212 Expression in Lung Cancer

Mariarosaria Incoronato; Loredana Urso; Ana Portela; Mikko O. Laukkanen; Ylermi Soini; Cristina Quintavalle; Simona Keller; Manel Esteller; Gerolama Condorelli

Many studies have shown that microRNA expression in cancer may be regulated by epigenetic events. Recently, we found that in lung cancer miR-212 was strongly down-regulated. However, mechanisms involved in the regulation of miR-212 expression are unknown. Therefore, we addressed this point by investigating the molecular mechanisms of miR-212 silencing in lung cancer. We identified histone modifications rather than DNA hypermethylation as epigenetic events that regulate miR-212 levels in NSCLC. Moreover, we found that miR-212 silencing in vivo is closely associated with the severity of the disease.


Cancers | 2011

Recent Advance in Biosensors for microRNAs Detection in Cancer

Silvia Catuogno; Carla Esposito; Cristina Quintavalle; Laura Cerchia; Gerolama Condorelli; Vittorio de Franciscis

MicroRNAs (miRNAs) are short non-protein-coding RNA molecules that regulate the expression of a wide variety of genes. They act by sequence-specific base pairing in the 3′ untranslated region (3′UTR) of the target mRNA leading to mRNA degradation or translation inhibition. Recent studies have implicated miRNAs in a wide range of biological processes and diseases including development, metabolism and cancer, and revealed that expression levels of individual miRNAs may serve as reliable molecular biomarkers for cancer diagnosis and prognosis. Therefore, a major challenge is to develop innovative tools able to couple high sensitivity and specificity for rapid detection of miRNAs in a given cell or tissue. In this review, we focus on the latest innovative approaches proposed for miRNA profiling in cancer and discuss their advantages and disadvantages.


PLOS ONE | 2013

MiR-221/222 target the DNA methyltransferase MGMT in glioma cells.

Cristina Quintavalle; Davide Mangani; Giuseppina Roscigno; Giulia Romano; Angel Diaz-Lagares; Margherita Iaboni; Elvira Donnarumma; Danilo Fiore; Pasqualino De Marinis; Ylermi Soini; Manel Esteller; Gerolama Condorelli

Glioblastoma multiforme (GBM) is one of the most deadly types of cancer. To date, the best clinical approach for treatment is based on administration of temozolomide (TMZ) in combination with radiotherapy. Much evidence suggests that the intracellular level of the alkylating enzyme O6-methylguanine–DNA methyltransferase (MGMT) impacts response to TMZ in GBM patients. MGMT expression is regulated by the methylation of its promoter. However, evidence indicates that this is not the only regulatory mechanism present. Here, we describe a hitherto unknown microRNA-mediated mechanism of MGMT expression regulation. We show that miR-221 and miR-222 are upregulated in GMB patients and that these paralogues target MGMT mRNA, inducing greater TMZ-mediated cell death. However, miR-221/miR-222 also increase DNA damage and, thus, chromosomal rearrangements. Indeed, miR-221 overexpression in glioma cells led to an increase in markers of DNA damage, an effect rescued by re-expression of MGMT. Thus, chronic miR-221/222-mediated MGMT downregulation may render cells unable to repair genetic damage. This, associated also to miR-221/222 oncogenic potential, may poor GBM prognosis.


Oncotarget | 2017

Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer.

Elvira Donnarumma; Danilo Fiore; Martina Nappa; Giuseppina Roscigno; Assunta Adamo; Margherita Iaboni; Valentina Russo; Alessandra Affinito; Ilaria Puoti; Cristina Quintavalle; Anna Rienzo; Salvatore Piscuoglio; Renato Thomas; Gerolama Condorelli

Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment. They may drive tumor progression, although the mechanisms involved are still poorly understood. Exosomes have emerged as important mediators of intercellular communication in cancer. They mediate horizontal transfer of microRNAs (miRs), mRNAs and proteins, thus affecting breast cancer progression. Differential expression profile analysis identified three miRs (miRs -21, -378e, and -143) increased in exosomes from CAFs as compared from normal fibroblasts. Immunofluorescence indicated that exosomes may be transferred from CAFs to breast cancer cells, releasing their cargo miRs. Breast cancer cells (BT549, MDA-MB-231, and T47D lines) exposed to CAF exosomes or transfected with those miRs exhibited a significant increased capacity to form mammospheres, increased stem cell and epithelial-mesenchymal transition (EMT) markers, and anchorage-independent cell growth. These effects were reverted by transfection with anti-miRs. Similarly to CAF exosomes, normal fibroblast exosomes transfected with miRs -21, -378e, and -143 promoted the stemness and EMT phenotype of breast cancer cells. Thus, we provided evidence for the first time of the role of CAF exosomes and their miRs in the induction of the stemness and EMT phenotype in different breast cancer cell lines. Indeed, CAFs strongly promote the development of an aggressive breast cancer cell phenotype.


European Journal of Heart Failure | 2014

Ranolazine protects from doxorubicin-induced oxidative stress and cardiac dysfunction

Carlo G. Tocchetti; Andrea Carpi; C. Coppola; Cristina Quintavalle; Domenica Rea; Marika Campesan; Antonella Arcari; Giovanna Piscopo; Clemente Cipresso; Maria Gaia Monti; Claudia De Lorenzo; Claudio Arra; Gerolama Condorelli; Fabio Di Lisa; Nicola Maurea

Doxorubicin is widely used against cancer; however, it can produce heart failure (HF). Among other hallmarks, oxidative stress is a major contributor to HF pathophysiology. The late INa inhibitor ranolazine has proven effective in treating experimental HF. Since elevated [Na+]i is present in failing myocytes, and has been recently linked with reactive oxygen species (ROS) production, our aim was to assess whether ranolazine prevents doxorubicin‐induced cardiotoxicity, and whether blunted oxidative stress is a mechanism accounting for such protection.

Collaboration


Dive into the Cristina Quintavalle's collaboration.

Top Co-Authors

Avatar

Gerolama Condorelli

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Carlo Briguori

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Elvira Donnarumma

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Giuseppina Roscigno

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danilo Fiore

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Margherita Iaboni

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Ciro Zanca

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge