Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Solano is active.

Publication


Featured researches published by Cristina Solano.


Journal of Bacteriology | 2001

Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation

Carme Cucarella; Cristina Solano; Jaione Valle; Beatriz Amorena; Iñigo Lasa; José R. Penadés

Identification of new genes involved in biofilm formation is needed to understand the molecular basis of strain variation and the pathogenic mechanisms implicated in chronic staphylococcal infections. A biofilm-producing Staphylococcus aureus isolate was used to generate biofilm-negative transposon (Tn917) insertion mutants. Two mutants were found with a significant decrease in attachment to inert surfaces (early adherence), intercellular adhesion, and biofilm formation. The transposon was inserted at the same locus in both mutants. This locus (bap [for biofilm associated protein]) encodes a novel cell wall associated protein of 2,276 amino acids (Bap), which shows global organizational similarities to surface proteins of gram-negative (Pseudomonas aeruginosa and Salmonella enterica serovar Typhi) and gram-positive (Enteroccocus faecalis) microorganisms. Baps core region represents 52% of the protein and consists of 13 successive nearly identical repeats, each containing 86 amino acids. bap was present in a small fraction of bovine mastitis isolates (5% of the 350 S. aureus isolates tested), but it was absent from the 75 clinical human S. aureus isolates analyzed. All staphylococcal isolates harboring bap were highly adherent and strong biofilm producers. In a mouse infection model bap was involved in pathogenesis, causing a persistent infection.


Molecular Microbiology | 2002

Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose

Cristina Solano; Begoña García; Jaione Valle; Carmen Berasain; Jean-Marc Ghigo; Carlos Gamazo; Iñigo Lasa

We report here a new screening method based on the fluorescence of colonies on calcofluor agar plates to identify transposon insertion mutants of Salmonella enteritidis that are defective in biofilm development. The results not only confirmed the requirement of genes already described for the modulation of multicellular behaviour in Salmonella typhimurium and other species, but also revealed new aspects of the biofilm formation process, such as two new genetic elements, named as bcsABZC and bcsEFG operons, required for the synthesis of an exopolysaccharide, digestible with cellulase. Non‐polar mutations of bcsC and bcsE genes and complementation experiments demonstrated that both operons are respon‐sible for cellulose biosynthesis in both S. enteritidis and S. typhimurium. Using two different growth media, ATM and LB, we showed that the biofilm produced by S. enteritidis is made of different constituents, suggesting that biofilm composition and regulation depends on environmental conditions. Bacterial adherence and invasion assays of eukaryotic cells and in vivo virulence studies of cellulose‐deficient mutants indicated that, at least under our experimental conditions, the production of cellulose is not involved in the virulence of S. enteritidis. However, cellulose‐deficient mutants were more sensitive to chlorine treatments, suggesting that cellulose production and biofilm formation may be an important factor for the survival of S. enteritidis on surface environments.


Applied and Environmental Microbiology | 2001

The Enterococcal Surface Protein, Esp, Is Involved in Enterococcus faecalis Biofilm Formation

Alejandro Toledo-Arana; Jaione Valle; Cristina Solano; Marı́a Jesús Arrizubieta; Carme Cucarella; Marta Lamata; Beatriz Amorena; José Leiva; José R. Penadés; Iñigo Lasa

ABSTRACT The enterococcal surface protein, Esp, is a high-molecular-weight surface protein of unknown function whose frequency is significantly increased among infection-derived Enterococcus faecalisisolates. In this work, a global structural similarity was found between Bap, a biofilm-associated protein of Staphylococcus aureus, and Esp. Analysis of the relationship between the presence of the Esp-encoding gene (esp) and the biofilm formation capacity in E. faecalis demonstrated that the presence of the esp gene is highly associated (P < 0.0001) with the capacity of E. faecalis to form a biofilm on a polystyrene surface, since 93.5% of the E. faecalis esp-positive isolates were capable of forming a biofilm. Moreover, none of the E. faecalis esp-deficient isolates were biofilm producers. Depending on theE. faecalis isolate, insertional mutagenesis ofesp caused either a complete loss of the biofilm formation phenotype or no apparent phenotypic defect. Complementation studies revealed that Esp expression in an E. faecalis esp-deficient strain promoted primary attachment and biofilm formation on polystyrene and polyvinyl chloride plastic from urine collection bags. Together, these results demonstrate that (i) biofilm formation capacity is widespread among clinical E. faecalis isolates, (ii) the biofilm formation capacity is restricted to the E. faecalis strains harboringesp, and (iii) Esp promotes primary attachment and biofilm formation of E. faecalis on abiotic surfaces.


Molecular Microbiology | 2004

Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation.

Begoña García; Cristina Latasa; Cristina Solano; Francisco Portillo; Carlos Gamazo; Iñigo Lasa

Salmonella enterica serovar Typhimurium is capable of producing cellulose as the main exopolysaccharide compound of the biofilm matrix. It has been shown for Gluconacetobacter xylinum that cellulose biosynthesis is allosterically regulated by bis‐(3′,5′) cyclic diguanylic acid, whose synthesis/degradation depends on diguanylate cyclase/phosphodiesterase enzymatic activities. A protein domain, named GGDEF, is present in all diguanylate cyclase/phosphodiesterase enzymes that have been studied to date. In this study, we analysed the molecular mechanisms responsible for the failure of Salmonella typhimurium strain SL1344 to form biofilms under different environmental conditions. Using a complementation assay, we were able to identify two genes, which can restore the biofilm defect of SL1344 when expressed from the plasmid pBR328. Based on the observation that one of the genes, STM1987, contains a GGDEF domain, and the other, mlrA, indirectly controls the expression of another GGDEF protein, AdrA, we proceeded on a mutational analysis of the additional GG[DE]EF motif containing proteins of S. typhimurium. Our results demonstrated that MlrA, and thus AdrA, is required for cellulose production and biofilm formation in LB complex medium whereas STM1987 (GGDEF domain containing protein A, gcpA) is critical for biofilm formation in the nutrient‐deficient medium, ATM. Insertional inactivation of the other six members of the GGDEF family (gcpB‐G) showed that only deletion of yciR (gcpE) affected cellulose production and biofilm formation. However, when provided on plasmid pBR328, most of the members of the GGDEF family showed a strong dominant phenotype able to bypass the need for AdrA and GcpA respectively. Altogether, these results indicate that most GGDEF proteins of S. typhimurium are functionally related, probably by controlling the levels of the same final product (cyclic di‐GMP), which include among its regulatory targets the cellulose production and biofilm formation of S. typhimurium.


Journal of Bacteriology | 2009

Protein A-Mediated Multicellular Behavior in Staphylococcus aureus

Nekane Merino; Alejandro Toledo-Arana; Marta Vergara-Irigaray; Jaione Valle; Cristina Solano; Enrique Calvo; Juan Antonio López; Timothy J. Foster; José R. Penadés; Iñigo Lasa

The capacity of Staphylococcus aureus to form biofilms on host tissues and implanted medical devices is one of the major virulence traits underlying persistent and chronic infections. The matrix in which S. aureus cells are encased in a biofilm often consists of the polysaccharide intercellular adhesin (PIA) or poly-N-acetyl glucosamine (PNAG). However, surface proteins capable of promoting biofilm development in the absence of PIA/PNAG exopolysaccharide have been described. Here, we used two-dimensional nano-liquid chromatography and mass spectrometry to investigate the composition of a proteinaceous biofilm matrix and identified protein A (spa) as an essential component of the biofilm; protein A induced bacterial aggregation in liquid medium and biofilm formation under standing and flow conditions. Exogenous addition of synthetic protein A or supernatants containing secreted protein A to growth media induced biofilm development, indicating that protein A can promote biofilm development without being covalently anchored to the cell wall. Protein A-mediated biofilm formation was completely inhibited in a dose-dependent manner by addition of serum, purified immunoglobulin G, or anti-protein A-specific antibodies. A murine model of subcutaneous catheter infection unveiled a significant role for protein A in the development of biofilm-associated infections, as the amount of protein A-deficient bacteria recovered from the catheter was significantly lower than that of wild-type bacteria when both strains were used to coinfect the implanted medical device. Our results suggest a novel role for protein A complementary to its known capacity to interact with multiple immunologically important eukaryotic receptors.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Genome-wide antisense transcription drives mRNA processing in bacteria

Iñigo Lasa; Alejandro Toledo-Arana; Alexander Dobin; Maite Villanueva; I. R. de los Mozos; Marta Vergara-Irigaray; Victor Segura; Delphine Fagegaltier; José R. Penadés; Jaione Valle; Cristina Solano; Thomas R. Gingeras

RNA deep sequencing technologies are revealing unexpected levels of complexity in bacterial transcriptomes with the discovery of abundant noncoding RNAs, antisense RNAs, long 5′ and 3′ untranslated regions, and alternative operon structures. Here, by applying deep RNA sequencing to both the long and short RNA fractions (<50 nucleotides) obtained from the major human pathogen Staphylococcus aureus, we have detected a collection of short RNAs that is generated genome-wide through the digestion of overlapping sense/antisense transcripts by RNase III endoribonuclease. At least 75% of sense RNAs from annotated genes are subject to this mechanism of antisense processing. Removal of RNase III activity reduces the amount of short RNAs and is accompanied by the accumulation of discrete antisense transcripts. These results suggest the production of pervasive but hidden antisense transcription used to process sense transcripts by means of creating double-stranded substrates. This process of RNase III-mediated digestion of overlapping transcripts can be observed in several evolutionarily diverse Gram-positive bacteria and is capable of providing a unique genome-wide posttranscriptional mechanism to adjust mRNA levels.


Infection and Immunity | 2009

Relevant Role of Fibronectin-Binding Proteins in Staphylococcus aureus Biofilm-Associated Foreign-Body Infections

Marta Vergara-Irigaray; Jaione Valle; Nekane Merino; Cristina Latasa; Begoña García; Igor Ruiz de los Mozos; Cristina Solano; Alejandro Toledo-Arana; José R. Penadés; Iñigo Lasa

ABSTRACT Staphylococcus aureus can establish chronic infections on implanted medical devices due to its capacity to form biofilms. Analysis of the factors that assemble cells into a biofilm has revealed the occurrence of strains that produce either a polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG) exopolysaccharide- or a protein-dependent biofilm. Examination of the influence of matrix nature on the biofilm capacities of embedded bacteria has remained elusive, because a natural strain that readily converts between a polysaccharide- and a protein-based biofilm has not been studied. Here, we have investigated the clinical methicillin (meticillin)-resistant Staphylococcus aureus strain 132, which is able to alternate between a proteinaceous and an exopolysaccharidic biofilm matrix, depending on environmental conditions. Systematic disruption of each member of the LPXTG surface protein family identified fibronectin-binding proteins (FnBPs) as components of a proteinaceous biofilm formed in Trypticase soy broth-glucose, whereas a PIA/PNAG-dependent biofilm was produced under osmotic stress conditions. The induction of FnBP levels due to a spontaneous agr deficiency present in strain 132 and the activation of a LexA-dependent SOS response or FnBP overexpression from a multicopy plasmid enhanced biofilm development, suggesting a direct relationship between the FnBP levels and the strength of the multicellular phenotype. Scanning electron microscopy revealed that cells growing in the FnBP-mediated biofilm formed highly dense aggregates without any detectable extracellular matrix, whereas cells in a PIA/PNAG-dependent biofilm were embedded in an abundant extracellular material. Finally, studies of the contribution of each type of biofilm matrix to subcutaneous catheter colonization revealed that an FnBP mutant displayed a significantly lower capacity to develop biofilm on implanted catheters than the isogenic PIA/PNAG-deficient mutant.


Current Opinion in Microbiology | 2014

Biofilm dispersion and quorum sensing.

Cristina Solano; Maite Echeverz; Iñigo Lasa

Biofilm development and quorum sensing (QS) are closely interconnected processes. Biofilm formation is a cooperative group behaviour that involves bacterial populations living embedded in a self-produced extracellular matrix. QS is a cell-cell communication mechanism that synchronizes gene expression in response to population cell density. Intuitively, it would appear that QS might coordinate the switch to a biofilm lifestyle when the population density reaches a threshold level. However, compelling evidence obtained in different bacterial species coincides in that activation of QS occurs in the formed biofilm and activates the maturation and disassembly of the biofilm in a coordinate manner. The aim of this review is to illustrate, using four bacterial pathogens as examples, the emergent concept that QS activates the biofilm dispersion process.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella

Cristina Solano; Begoña García; Cristina Latasa; Alejandro Toledo-Arana; Violeta Zorraquino; Jaione Valle; Joan Casals; Enrique Pedroso; Iñigo Lasa

Bacteria have developed an exclusive signal transduction system involving multiple diguanylate cyclase and phosphodiesterase domain-containing proteins (GGDEF and EAL/HD-GYP, respectively) that modulate the levels of the same diffusible molecule, 3′-5′-cyclic diguanylic acid (c-di-GMP), to transmit signals and obtain specific cellular responses. Current knowledge about c-di-GMP signaling has been inferred mainly from the analysis of recombinant bacteria that either lack or overproduce individual members of the pathway, without addressing potential compensatory effects or interferences between them. Here, we dissected c-di-GMP signaling by constructing a Salmonella strain lacking all GGDEF-domain proteins and then producing derivatives, each restoring 1 protein. Our analysis showed that most GGDEF proteins are constitutively expressed and that their expression levels are not interdependent. Complete deletion of genes encoding GGDEF-domain proteins abrogated virulence, motility, long-term survival, and cellulose and fimbriae synthesis. Separate restoration revealed that 4 proteins from Salmonella and 1 from Yersinia pestis exclusively restored cellulose synthesis in a c-di-GMP–dependent manner, indicating that c-di-GMP produced by different GGDEF proteins can activate the same target. However, the restored strain containing the STM4551-encoding gene recovered all other phenotypes by means of gene expression modulation independently of c-di-GMP. Specifically, fimbriae synthesis and virulence were recovered through regulation of csgD and the plasmid-encoded spvAB mRNA levels, respectively. This study provides evidence that the regulation of the GGDEF-domain proteins network occurs at 2 levels: a level that strictly requires c-di-GMP to control enzymatic activities directly, restricted to cellulose synthesis in our experimental conditions, and another that involves gene regulation for which c-di-GMP synthesis can be dispensable.


Journal of Bacteriology | 2013

Coordinated Cyclic-Di-GMP Repression of Salmonella Motility through YcgR and Cellulose

Violeta Zorraquino; Begoña García; Cristina Latasa; Maite Echeverz; Alejandro Toledo-Arana; Jaione Valle; Iñigo Lasa; Cristina Solano

Cyclic di-GMP (c-di-GMP) is a secondary messenger that controls a variety of cellular processes, including the switch between a biofilm and a planktonic bacterial lifestyle. This nucleotide binds to cellular effectors in order to exert its regulatory functions. In Salmonella, two proteins, BcsA and YcgR, both of them containing a c-di-GMP binding PilZ domain, are the only known c-di-GMP receptors. BcsA, upon c-di-GMP binding, synthesizes cellulose, the main exopolysaccharide of the biofilm matrix. YcgR is dedicated to c-di-GMP-dependent inhibition of motility through its interaction with flagellar motor proteins. However, previous evidences indicate that in the absence of YcgR, there is still an additional element that mediates motility impairment under high c-di-GMP levels. Here we have uncovered that cellulose per se is the factor that further promotes inhibition of bacterial motility once high c-di-GMP contents drive the activation of a sessile lifestyle. Inactivation of different genes of the bcsABZC operon, mutation of the conserved residues in the RxxxR motif of the BcsA PilZ domain, or degradation of the cellulose produced by BcsA rescued the motility defect of ΔycgR strains in which high c-di-GMP levels were reached through the overexpression of diguanylate cyclases. High c-di-GMP levels provoked cellulose accumulation around cells that impeded flagellar rotation, probably by means of steric hindrance, without affecting flagellum gene expression, exportation, or assembly. Our results highlight the relevance of cellulose in Salmonella lifestyle switching as an architectural element that is both essential for biofilm development and required, in collaboration with YcgR, for complete motility inhibition.

Collaboration


Dive into the Cristina Solano's collaboration.

Top Co-Authors

Avatar

Iñigo Lasa

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar

Jaione Valle

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar

Alejandro Toledo-Arana

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar

Begoña García

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Cristina Latasa

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carmen Gil

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar

Saioa Burgui

Universidad Pública de Navarra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maite Echeverz

Universidad Pública de Navarra

View shared research outputs
Researchain Logo
Decentralizing Knowledge