Cristina Vicente-García
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristina Vicente-García.
Genome Research | 2011
Angel Carlos Roman; Francisco J. González-Rico; Eduardo Moltó; Henar Hernando; Ana Neto; Cristina Vicente-García; Esteban Ballestar; José Luis Gómez-Skarmeta; Jana Vavrova-Anderson; Robert J. White; Lluís Montoliu; Pedro M. Fernández-Salguero
Complex genomes utilize insulators and boundary elements to help define spatial and temporal gene expression patterns. We report that a genome-wide B1 SINE (Short Interspersed Nuclear Element) retrotransposon (B1-X35S) has potent intrinsic insulator activity in cultured cells and live animals. This insulation is mediated by binding of the transcription factors dioxin receptor (AHR) and SLUG (SNAI2) to consensus elements present in the SINE. Transcription of B1-X35S is required for insulation. While basal insulator activity is maintained by RNA polymerase (Pol) III transcription, AHR-induced insulation involves release of Pol III and engagement of Pol II transcription on the same strand. B1-X35S insulation is also associated with enrichment of heterochromatin marks H3K9me3 and H3K27me3 downstream of B1-X35S, an effect that varies with cell type. B1-X35S binds parylated CTCF and, consistent with a chromatin barrier activity, its positioning between two adjacent genes correlates with their differential expression in mouse tissues. Hence, B1 SINE retrotransposons represent genome-wide insulators activated by transcription factors that respond to developmental, oncogenic, or toxicological stimuli.
The Journal of Neuroscience | 2014
Tao Yu; Laura Calvo; Begoña Anta; Saray López-Benito; Roger López-Bellido; Cristina Vicente-García; Lino Tessarollo; Raquel E. Rodríguez; Juan Carlos Arévalo
Trk neurotrophin receptor ubiquitination in response to ligand activation regulates signaling, trafficking, and degradation of the receptors. However, the in vivo consequences of Trk ubiquitination remain to be addressed. We have developed a mouse model with a mutation in the TrkA neurotrophin receptor (P782S) that results in reduced ubiquitination due to a lack of binding to the E3 ubiquitin ligase, Nedd4-2. In vivo analyses of TrkAP782S indicate that defective ubiquitination of the TrkA mutant results in an altered trafficking and degradation of the receptor that affects the survival of sensory neurons. The dorsal root ganglia from the TrkAP782S knock-in mice display an increased number of neurons expressing CGRP and substance P. Moreover, the mutant mice show enhanced sensitivity to thermal and inflammatory pain. Our results indicate that the ubiquitination of the TrkA neurotrophin receptor plays a critical role in NGF-mediated functions, such as neuronal survival and sensitivity to pain.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Jianrong Wang; Cristina Vicente-García; Davide Seruggia; Eduardo Moltó; Ana Fernández-Miñán; Ana Neto; Elbert Lee; José Luis Gómez-Skarmeta; Lluís Montoliu; Victoria V. Lunyak; I. King Jordan
Significance Insulators are genome sequence elements that help to organize eukaryotic genomes into coherent regulatory domains. Insulators can encode both enhancer-blocking activity, which prevents the interaction between enhancers and promoters located in distinct regulatory domains, and/or chromatin barrier activity that helps to delineate active and repressive chromatin domains. The origins and functional characteristics of insulator sequence elements are important, open questions in molecular biology and genomics. This report provides insight into these questions by demonstrating the origins of a number of human insulator sequences from a family of transposable-element–derived repetitive sequence elements: mammalian-wide interspersed repeats (MIRs). Human MIR-derived insulators are characterized by distinct sequence, expression, and chromatin features that provide clues as to their potential mechanisms of action. Insulators are regulatory elements that help to organize eukaryotic chromatin via enhancer-blocking and chromatin barrier activity. Although there are several examples of transposable element (TE)-derived insulators, the contribution of TEs to human insulators has not been systematically explored. Mammalian-wide interspersed repeats (MIRs) are a conserved family of TEs that have substantial regulatory capacity and share sequence characteristics with tRNA-related insulators. We sought to evaluate whether MIRs can serve as insulators in the human genome. We applied a bioinformatic screen using genome sequence and functional genomic data from CD4+ T cells to identify a set of 1,178 predicted MIR insulators genome-wide. These predicted MIR insulators were computationally tested to serve as chromatin barriers and regulators of gene expression in CD4+ T cells. The activity of predicted MIR insulators was experimentally validated using in vitro and in vivo enhancer-blocking assays. MIR insulators are enriched around genes of the T-cell receptor pathway and reside at T-cell–specific boundaries of repressive and active chromatin. A total of 58% of the MIR insulators predicted here show evidence of T-cell–specific chromatin barrier and gene regulatory activity. MIR insulators appear to be CCCTC-binding factor (CTCF) independent and show a distinct local chromatin environment with marked peaks for RNA Pol III and a number of histone modifications, suggesting that MIR insulators recruit transcriptional complexes and chromatin modifying enzymes in situ to help establish chromatin and regulatory domains in the human genome. The provisioning of insulators by MIRs across the human genome suggests a specific mechanism by which TE sequences can be used to modulate gene regulatory networks.
International Journal of Molecular Sciences | 2018
Juan Carlos Arévalo; Enrique Hernández-Jiménez; Ada Jimenez-Gonzalez; María Torres-Valle; Roman S. Iwasaki; Roger López-Bellido; Cristina Vicente-García; Raquel E. Rodríguez
The opioid system is well conserved among species and plays a critical role in pain and addiction systems. The use of zebrafish as an experimental model to study development and genetics is extraordinary and has been proven to be relevant for the study of different diseases. The main drawback to its use for the analysis of different pathologies is the lack of protein tools. Antibodies that work in other models are not suitable for zebrafish due to the low degree of homology that exists among the opioid receptor protein sequences in different species. Here we report the successful generation and characterization of antibodies against the mu, delta 1 and delta 2 opioid receptors in zebrafish. The antibodies obtained, which are specific for each receptor due to the use of the C-terminus as antigens, work for Western blotting and immunohistochemistry. In addition, the antibodies against mu and delta 1 opioid receptors, but not those against delta 2, are able to immunoprecipitate the corresponding receptor from zebrafish lysates. The development of opioid receptor antibodies is an asset to the further study of the endogenous opioid system in zebrafish.
Journal of Biological Chemistry | 2016
Begoña Anta; Carlos Martín-Rodríguez; Carolina Gomis-Perez; Laura Calvo; Saray López-Benito; Andrés A. Calderón-García; Cristina Vicente-García; Alvaro Villarroel; Juan Carlos Arévalo
Ubiquitination of the TrkA neurotrophin receptor in response to NGF is critical in the regulation of TrkA activation and functions. TrkA is ubiquitinated, among other E3 ubiquitin ligases, by Nedd4-2. To understand mechanistically how TrkA ubiquitination is regulated, we performed a siRNA screening to identify deubiquitinating enzymes and found that USP36 acts as an important regulator of TrkA activation kinetics and ubiquitination. However, USP36 action on TrkA was indirect because it does not deubiquitinate TrkA. Instead, USP36 binds to Nedd4-2 and regulates the association of TrkA and Nedd4-2. In addition, depletion of USP36 increases TrkA·Nedd4-2 complex formation, whereas USP36 expression disrupts the complex, resulting in an enhancement or impairment of Nedd4-2-dependent TrkA ubiquitination, respectively. Moreover, USP36 depletion leads to enhanced total and surface TrkA expression that results in increased NGF-mediated TrkA activation and signaling that augments PC12 cell differentiation. USP36 actions extend beyond TrkA because the presence of USP36 interferes with Nedd4-2-dependent Kv7.2/3 channel regulation. Our results demonstrate that USP36 binds to and regulates the actions of Nedd4-2 over different substrates affecting their expression and functions.
The Journal of Neuroscience | 2018
Saray López-Benito; Julia Sánchez-Sánchez; Verónica Brito; Laura Calvo; Silvia Lisa; María Torres-Valle; Mary Ellen Palko; Cristina Vicente-García; Seila Fernandez-Fernandez; Juan P. Bolaños; Silvia Ginés; Lino Tessarollo; Juan Carlos Arévalo
BDNF is a growth factor with important roles in the nervous system in both physiological and pathological conditions, but the mechanisms controlling its secretion are not completely understood. Here, we show that ARMS/Kidins220 negatively regulates BDNF secretion in neurons from the CNS and PNS. Downregulation of the ARMS/Kidins220 protein in the adult mouse brain increases regulated BDNF secretion, leading to its accumulation in the striatum. Interestingly, two mouse models of Huntingtons disease (HD) showed increased levels of ARMS/Kidins220 in the hippocampus and regulated BDNF secretion deficits. Importantly, reduction of ARMS/Kidins220 in hippocampal slices from HD mice reversed the impaired regulated BDNF release. Moreover, there are increased levels of ARMS/Kidins220 in the hippocampus and PFC of patients with HD. ARMS/Kidins220 regulates Synaptotagmin-IV levels, which has been previously observed to modulate BDNF secretion. These data indicate that ARMS/Kidins220 controls the regulated secretion of BDNF and might play a crucial role in the pathogenesis of HD. SIGNIFICANCE STATEMENT BDNF is an important growth factor that plays a fundamental role in the correct functioning of the CNS. The secretion of BDNF must be properly controlled to exert its functions, but the proteins regulating its release are not completely known. Using neuronal cultures and a new conditional mouse to modulate ARMS/Kidins220 protein, we report that ARMS/Kidins220 negatively regulates BDNF secretion. Moreover, ARMS/Kidins220 is overexpressed in two mouse models of Huntingtons disease (HD), causing an impaired regulation of BDNF secretion. Furthermore, ARMS/Kidins220 levels are increased in brain samples from HD patients. Future studies should address whether ARMS/Kidins220 has any function on the pathophysiology of HD.
Archive | 2011
Eduardo Moltó; Cristina Vicente-García; A. Fernández; Lluís Montoliu
Vertebrate genomes are functionally and structurally organised as gene expression domains. These domains contain all regulatory elements required for the gene (or genes) to be expressed correctly, and include those required to shield each domain, thereby blocking any non-desirable interaction from their neighbours. These elements are known as “boundaries” or “insulators” and their function is to insulate gene expression domains in genomes allowing the protected locus to be expressed according to internal regulatory elements, without suffering from the adverse effects of flanking loci and without transmitting the effect of the internal regulatory elements beyond the protected domain. Insulators can act as “enhancer blockers”, preventing a distal enhancer from interacting with a proximal promoter, when placed in between, and/or as “barriers”, preventing chromosomal position effects associated with the genomic location. In addition, insulators are known to contribute to the chromatin and nuclear structural organization. A variety of molecular mechanisms have been associated with boundary function, probably reflecting the diversity of functional elements that can efficiently insulate genomic sequences. Insulator elements can be used in biotechnological applications, as spacers, as boundaries, and be applied to any gene expression construct to be used in gene transfer experiments (i.e. transgenesis, gene therapy), thereby preventing the inappropriate expression patterns of constructs and shielding them from neighbouring sequences surrounding the place of insertion in the host genomes.
Genome Biology | 2017
Cristina Vicente-García; Barbara Villarejo-Balcells; Ibai Irastorza-Azcarate; Silvia Naranjo; Rafael D. Acemel; Juan J. Tena; Peter W.J. Rigby; Damien P. Devos; José Luis Gómez-Skarmeta; Jaime J. Carvajal
Archive | 2011
Eduardo Moltó; Cristina Vicente-García; Lluís Montoliu
Archive | 2018
Cristina Vicente-García; Jaime J. Carvajal