Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristopher Hermosilla is active.

Publication


Featured researches published by Cristopher Hermosilla.


Archive | 2017

Hamilton–Jacobi–Bellman Equations

Adriano Festa; Roberto Guglielmi; Cristopher Hermosilla; Athena Picarelli; Smita Sahu; Achille Sassi; Francisco J. Silva

In this chapter we present recent developments in the theory of Hamilton–Jacobi–Bellman (HJB) equations as well as applications. The intention of this chapter is to exhibit novel methods and techniques introduced few years ago in order to solve long-standing questions in nonlinear optimal control theory of Ordinary Differential Equations (ODEs).


Systems & Control Letters | 2017

Hamilton–Jacobi–Bellman equations for optimal control processes with convex state constraints

Cristopher Hermosilla; Richard B. Vinter; Hasnaa Zidani

Abstract This work aims at studying some optimal control problems with convex state constraint sets. It is known that for state constrained problems, and when the state constraint set coincides with the closure of its interior, the value function satisfies a Hamilton–Jacobi equation in the constrained viscosity sense. This notion of solution has been introduced by H.M. Soner (1986) and provides a characterization of the value functions in many situations where an inward pointing condition (IPC) is satisfied. Here, we first identify a class of control problems where the constrained viscosity notion is still suitable to characterize the value function without requiring the IPC. Moreover, we generalize the notion of constrained viscosity solutions to some situations where the state constraint set has an empty interior.


conference on decision and control | 2016

Self-dual approximations to fully convex impulsive systems

Cristopher Hermosilla; Peter R. Wolenski

Fully convex optimal control problems contain a Lagrangian that is jointly convex in the state and velocity variables. Problems of this kind have been widely investigated by Rockafellar and collaborators if the Lagrangian is coercive and without state constraints. A lack of coercivity implies the dual has nontrivial state constraints, and vice versa (that is, they are dual concepts in convex analysis). We consider a framework using Goebels self-dualizing technique that approximates both the primal and dual problem simultaneously and maintains the duality relationship. Previous results are applicable to the approximations, and we investigate the limiting behavior as the approximations approach the original problem. A specific example is worked out in detail.


Journal of Differential Equations | 2015

Infinite horizon problems on stratifiable state-constraints sets

Cristopher Hermosilla; Hasnaa Zidani


Set-valued and Variational Analysis | 2016

Legendre Transform and Applications to Finite and Infinite Optimization

Cristopher Hermosilla


Set-valued and Variational Analysis | 2018

The Mayer and Minimum Time Problems with Stratified State Constraints

Cristopher Hermosilla; Peter R. Wolenski; Hasnaa Zidani


Discrete and Continuous Dynamical Systems | 2015

Stratified discontinuous differential equations and sufficient conditions for robustness

Cristopher Hermosilla


Journal of Differential Equations | 2017

Discontinuous solutions of Hamilton-Jacobi equations on networks *

Philip Jameson Graber; Cristopher Hermosilla; Hasnaa Zidani


IFAC-PapersOnLine | 2017

Constrained and impulsive Linear Quadratic control problems

Cristopher Hermosilla; Peter R. Wolenski


Archive | 2015

Optimal control problems on well-structured domains and stratified feedback controls

Cristopher Hermosilla

Collaboration


Dive into the Cristopher Hermosilla's collaboration.

Top Co-Authors

Avatar

Peter R. Wolenski

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge