Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Crystal A. West is active.

Publication


Featured researches published by Crystal A. West.


Advances in Physiology Education | 2011

Voluntary Participation in an Active Learning Exercise Leads to a Better Understanding of Physiology

Helena Carvalho; Crystal A. West

Students learn best when they are focused and thinking about the subject at hand. To teach physiology, we must offer opportunities for students to actively participate in class. This approach aids in focusing their attention on the topic and thus generating genuine interest in the mechanisms involved. This study was conducted to determine if offering voluntary active learning exercises would improve student understanding and application of the material covered. To compare performance, an anonymous cardiorespiratory evaluation was distributed to two groups of students during the fall (control, n = 168) and spring (treatment, n = 176) semesters. Students in both groups were taught by traditional methods, and students in the treatment group had the option to voluntary participate in two additional active learning exercises: 1) a small group discussion, where students would discuss a physiology topic with their Teaching Assistant before running BIOPAC software for the laboratory exercise and 2) a free response question, where students anonymously responded to one short essay question after the laboratory exercise. In these formative assessments, students received feedback about their present state of learning from the discussion with their peers and also from the instructor comments regarding perceived misconceptions. As a result of the participation in these activities, students in the treatment group had a better overall performance [χ(2) (degree of freedom = 1) = 31.2, P < 0.001] on the evaluation (treatment group: 62% of responses correct and control group: 49%) with an observed difference of 13% (95% confidence interval: 8, 17). In conclusion, this study presents sufficient evidence that when the opportunity presents itself, students become active participants in the learning process, which translates into an improvement in their understanding and application of physiological concepts.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Increased renal α-epithelial sodium channel (ENAC) protein and increased ENAC activity in normal pregnancy

Crystal A. West; Zheng Zhang; Geoffrey Ecker; Shyama Masilamani

Pregnancy-mediated sodium (Na) retention is required to provide an increase in plasma volume for the growing fetus. The mechanisms responsible for this Na retention are not clear. We first used a targeted proteomics approach and found that there were no changes in the protein abundance compared with virgin rats of the β or γ ENaC, type 3 Na(+)/H(+) exchanger (NHE3), bumetanide-sensitive cotransporter (NKCC2), or NaCl cotransporter (NCC) in mid- or late pregnancy. In contrast, we observed marked increases in the abundance of the α-ENaC subunit. The plasma volume increased progressively during pregnancy with the greatest plasma volume being evident in late pregnancy. ENaC inhibition abolished the difference in plasma volume status between virgin and pregnant rats. To determine the in vivo activity of ENaC, we conducted in vivo studies of rats in late pregnancy (days 18-20) and virgin rats to measure the natriuretic response to ENaC blockade (with benzamil). The in vivo activity of ENaC (U(Na)V postbenzamil-U(Na)V postvehicle) was markedly increased in late pregnancy, and this difference was abolished by pretreatment with the mineralocorticoid receptor antagonist, eplerenone. These findings demonstrate that the increased α-ENaC subunit of pregnancy is associated with an mineralocorticoid-dependent increase in ENaC activity. Further, we show that ENaC activity is a major contributor of plasma volume status in late pregnancy. These changes are likely to contribute to the renal sodium retention and plasma volume expansion required for an optimal pregnancy.


The Journal of Physiology | 2013

Effects of voluntary wheel running on the kidney at baseline and after ischaemia–reperfusion‐induced acute kidney injury: a strain difference comparison

Natasha C. Moningka; Mark W. Cunningham; Myrline Sterling; Crystal A. West; Jill W. Verlander; Byron P. Croker; Joslyn Ahlgren; Linda F. Hayward; Chris Baylis

The impact of exercise on functional proteins critical for proper blood vessel health in the kidney is not well understood. Using rats of different genetic backgrounds, we studied how chronic exercise affects the abundance of specific blood vessel proteins in the kidney, and whether this has any impact on the rats susceptibility to acute kidney injury. We found that the renal response to exercise is dependent on genetic background, and that in one strain exercise rendered the kidney more vulnerable to acute kidney injury. The vulnerable rats exhibited exercise‐dependent loss of the protective renal proteins critical for proper blood vessel health, while the protected strain showed increases in these protective proteins. Our findings are particularly relevant regarding exercise prescription to kidney disease patients.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Renal redox response to normal pregnancy in the rat

Mark W. Cunningham; Jennifer M. Sasser; Crystal A. West; Chris Baylis

Normal pregnancy involves increased renal sodium reabsorption, metabolism, and oxygen consumption, which can cause increased oxidative stress (OS). OS can decrease nitric oxide (NO) bioavailability and cause pregnancy complications. In this study we examined the NO synthases (NOS) and redox state in the kidney cortex and aorta in early (E), mid (M), and late (L) pregnant (P) (days 3, 12, 20) and 2-4 days postpartum (PP) rats compared with virgin rats (V). Protein abundance of endothelial NOS (eNOS) was unchanged and neuronal NOS (nNOS)α fell at LP in the kidney cortex. Kidney cortex nNOSβ was elevated at MP, LP, and PP. No changes in aortic NOS isoforms were observed. Kidney cortex nitrotyrosine (NT) abundance decreased in EP, MP, and PP, whereas aortic NT increased in EP, MP, and PP. The NADPH oxidase subunit p22phox decreased in the kidney cortex at EP while aortic p22phox increased in EP and LP. No changes in kidney cortex NADPH-dependent superoxide production or hydrogen peroxide levels were noted. Kidney cortex cytosolic (CuZn) superoxide dismutase (SOD) was unchanged, while mitochondrial SOD decreased at EP and extracellular SOD decreased at MP and LP in the kidney cortex. Despite falls in abundance of kidney cortex SODs, total antioxidant capacity (TAC) was elevated in EP, MP, and PP in the kidney cortex. Aortic CuZn SOD deceased at PP, while the other aortic SODs and aortic TAC did not change. Data from this study suggest that the kidney cortex is protected from OS during normal rat pregnancy via an increase in antioxidant activity.


American Journal of Hypertension | 2013

Renal Nitric Oxide Synthase and Antioxidant Preservation in Cyp1a1-Ren-2 Transgenic Rats With Inducible Malignant Hypertension

Mark W. Cunningham; Jennifer M. Sasser; Crystal A. West; Carlo J Milani; Chris Baylis; Kenneth D. Mitchell

BACKGROUND Dietary administration of 0.30% indole-3-carbinol (I3C) to Cyp1a1-Ren2 transgenic rats (TGRs) generates angiotensin II (ANG II)-dependent malignant hypertension (HTN) and increased renal vascular resistance. However, TGRs with HTN maintain a normal or slightly reduced glomerular filtration rate. We tested the hypothesis that maintenance of renal function in hypertensive Cyp1a1-Ren2 TGRs is due to preservation of the intrarenal nitric oxide (NO) and antioxidant systems. METHODS Kidney cortex, kidney medulla, aortic endothelial (e) and neuronal (n) nitric oxide synthase (NOS), superoxide dismutases (SODs), and p22phox (nicotinamide adenine dinucleotide phosphate-oxidase subunit) protein abundances were measured along with kidney cortex total antioxidant capacity (TAC) and NOx. TGRs were fed a normal diet that contained 0.3% I3C or 0.3% I3C + candesartan (AT1 receptor antagonist; 25mg/L in drinking water) (n = 5-6 per group) for 10 days. RESULTS Blood pressure increased and body weight decreased in I3C-induced TGRs, while candesartan blunted these responses. Abundances of NOS, SOD, and p22phox as well as TAC were maintained in the kidney cortex of I3C-induced TGRs with and without candesartan, while kidney cortex NOx production increased in both groups. Kidney medulla eNOS and extracellular (EC) SOD decreased and nNOS were unchanged in both groups of I3C-induced TGRs. In addition, a compensatory increase occurred in kidney medulla Mn SOD in I3C-induced TGRs + candesartan. Aortic eNOS and nNOS∝ fell and p22phox and Mn SOD increased in hypertensive I3C-induced TGRs; all changes were reversed with candesartan. CONCLUSIONS The preservation of renal cortical NO and antioxidant capacity is associated with preserved renal function in Cyp1a1-Ren2 TGRs with ANG II-dependent malignant HTN.


Experimental Physiology | 2015

The chloride–bicarbonate exchanger pendrin is increased in the kidney of the pregnant rat

Crystal A. West; Jill W. Verlander; Susan M. Wall; Chris Baylis

What is the central question of this study? Pregnancy requires a robust plasma volume expansion driven by renal sodium retention. In the late‐pregnant kidney, the aldosterone‐responsive epithelial Na+ channel is increased, whereas the sodium–chloride cotransporter is decreased. Pendrin has been shown to support sodium reabsorption in the distal nephron and compensate for loss of the sodium–chloride cotransporter. We investigated the expression and abundance of pendrin in the pregnant kidney. What is the main finding and its importance? Pendrin protein, apical localization and thiazide sensitivity are increased in pregnancy. This implicates a possible role for pendrin in supporting the renal sodium chloride reabsorption and plasma volume expansion of pregnancy.


American Journal of Physiology-renal Physiology | 2015

Renal NCC is unchanged in the midpregnant rat and decreased in the late pregnant rat despite avid renal Na+ retention.

Crystal A. West; Alicia A. McDonough; Shyama Masilamani; Jill W. Verlander; Chris Baylis

Pregnancy is characterized by plasma volume expansion due to Na(+) retention, driven by aldosterone. The aldosterone-responsive epithelial Na(+) channel is activated in the kidney in pregnancy. In the present study, we investigated the aldosterone-responsive Na(+)-Cl(-) cotransporter (NCC) in mid- and late pregnant rats compared with virgin rats. We determined the abundance of total NCC, phosphorylated NCC (pNCC; pT53, pS71 and pS89), phosphorylated STE20/SPS-1-related proline-alanine-rich protein kinase (pSPAK; pS373), and phosphorylated oxidative stress-related kinase (pOSR1; pS325) in the kidney cortex. We also measured mRNA expression of NCC and members of the SPAK/NCC regulatory kinase network, serum and glucocorticoid-regulated kinase (SGK)1, total with no lysine kinase (WNK)1, WNK3, and WNK4. Additionally, we performed immunohistochemistry for NCC kidneys from virgin and pregnant rats. Total NCC, pNCC, and pSPAK/OSR1 abundance were unchanged in midpregnant versus virgin rats. In late pregnant versus virgin rats, total NCC and pNCC were decreased; however, pSPAK/OSR1 was unchanged. We detected no differences in mRNA expression of NCC, SGK1, total WNK1, WNK3, and WNK4. By immunohistochemistry, NCC was mainly localized to the apical region in virgin rats, and density in the apical region was reduced in late pregnancy. Therefore, despite high circulating aldosterone levels in pregnancy, the aldosterone-responsive transporter NCC is not increased in total or activated (phosphorylated) abundance or in apical localization in midpregnant rats, and all are reduced in late pregnancy. This contrasts to the mineralocorticoid-mediated activation of the epithelial Na(+) channel, which we have previously reported. Why and how NCC escapes aldosterone activation in pregnancy is not clear but may relate to regional differences in aldosterone sensitivity the increased K(+) intake or other undefined mechanisms.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Chronic vasodilation increases renal medullary PDE5A and α-ENaC through independent renin-angiotensin-aldosterone system pathways

Crystal A. West; Stefan Shaw; Jennifer M. Sasser; Andrea Fekete; Tyler Alexander; Mark W. Cunningham; Shyama Masilamani; Chris Baylis

We have previously observed that many of the renal and hemodynamic adaptations seen in normal pregnancy can be induced in virgin female rats by chronic systemic vasodilation. Fourteen-day vasodilation with sodium nitrite or nifedipine (NIF) produced plasma volume expansion (PVE), hemodilution, and increased renal medullary phosphodiesterase 5A (PDE5A) protein. The present study examined the role of the renin-angiotensin-aldosterone system (RAAS) in this mechanism. Virgin females were treated for 14 days with NIF (10 mg·kg(-1)·day(-1) via diet), NIF with spironolactone [SPR; mineralocorticoid receptor (MR) blocker, 200-300 mg·kg(-1)·day(-1) via diet], NIF with losartan [LOS; angiotensin type 1 (AT1) receptor blocker, 20 mg·kg(-1)·day(-1) via diet], enalapril (ENAL; angiotensin-converting enzyme inhibitor, 62.5 mg/l via water), or vehicle (CON). Mean arterial pressure (MAP) was reduced 7.4 ± 0.5% with NIF, 6.33 ± 0.5% with NIF + SPR, 13.3 ± 0.9% with NIF + LOS, and 12.0 ± 0.4% with ENAL vs. baseline MAP. Compared with CON (3.6 ± 0.3%), plasma volume factored for body weight was increased by NIF (5.2 ± 0.4%) treatment but not by NIF + SPR (4.3 ± 0.3%), NIF + LOS (3.6 ± 0.1%), or ENAL (4.0 ± 0.3%). NIF increased PDE5A protein abundance in the renal inner medulla, and SPR did not prevent this increase (188 ± 16 and 204 ± 22% of CON, respectively). NIF increased the α-subunit of the epithelial sodium channel (α-ENaC) protein in renal outer (365 ± 44%) and inner (526 ± 83%) medulla, and SPR prevented these changes. There was no change in either PDE5A or α-ENaC abundance vs. CON in rats treated with NIF + LOS or ENAL. These data indicate that the PVE and renal medullary adaptations in response to chronic vasodilation result from RAAS signaling, with increases in PDE5A mediated through AT1 receptor and α-ENaC through the MR.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Pregnant rats treated with a high-fat/prooxidant Western diet with ANG II and TNF-α are resistant to elevations in blood pressure and renal oxidative stress

Mark W. Cunningham; Crystal A. West; Xuerong Wen; Aihua Deng; Chris Baylis

Oxidative stress and inflammation are risk factors for hypertension in pregnancy. Here, we examined the 24-h mean arterial pressure (MAP) via telemetry and the nitric oxide (NO) and redox systems in the kidney cortex, medulla, and aorta of virgin and pregnant rats treated with a high-fat/prooxidant Western diet (HFD), ANG II, and TNF-α. Female Sprague-Dawley rats were given a normal diet (ND) or a HFD for 8 wk before mating. Day 6 of pregnancy and age-matched virgins were implanted with minipumps infusing saline or ANG II (150 ng·kg(-1)·min(-1)) + TNF-α (75 ng/day) for 14 days. Groups consisted of Virgin + ND + Saline (V+ND) (n = 7), Virgin + HFD +ANG II and TNF-α (V+HFD) (n = 7), Pregnant + ND + Saline (P+ND) (n = 6), and Pregnant + HFD + ANG II and TNF-α (P+HFD) (n = 8). After day 6 of minipump implantation, V+HFD rats displayed an increase in MAP on days 7, 8, and 10-15 vs. V+ND rats. P+HFD rats, after day 6 of minipump implantation, showed an increase in MAP only on day 7 vs. P+ND rats. P+HFD rats had a normal fall in 24-h MAP, hematocrit, plasma protein concentration, and osmolality at late pregnancy. No change in kidney cortex, medulla, or aortic oxidative stress in P+HFD rats. P+HFD rats displayed a decrease in nNOSβ abundance, but no change in kidney cortex NOx content vs. P+ND rats. Pregnant rats subjected to a chronic HFD and prooxidant and proinflammatory insults have a blunted increase in 24-h MAP and renal oxidative stress. Our data suggest renal NO bioavailability is not altered in pregnant rats treated with a HFD, ANG II, and TNF-α.


Pregnancy Hypertension: An International Journal of Women's Cardiovascular Health | 2015

[312-POS]: Mechanisms of renal potassium retention during late pregnancy

Crystal A. West; Emily Qiu; Chris Baylis; Michelle L. Gumz

Collaboration


Dive into the Crystal A. West's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shyama Masilamani

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicia A. McDonough

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Emily Qiu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zheng Zhang

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge