Csaba Janáky
University of Szeged
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Csaba Janáky.
Analytical and Bioanalytical Chemistry | 2013
Csaba Janáky; Csaba Visy
In this topical review, progress achieved in amperometric sensing of different analytes over conducting polymer-based hybrid electrocatalysts is summarized. We report a variety of synthetic methods and the resulting hybrid assemblies, with the effectiveness of such strategies, for designing conjugated polymer-based hybrids as robust sensors for amperometric detection. Beyond incorporation of metal nanoparticles, metal-oxide and non-oxide semiconductors, carbon-based nanomaterials (nanotubes, graphene, and graphene oxide), and special dopant ions are also discussed. Moreover, some particularly interesting miscellaneous approaches, for example photo-amperometric sensing or use of overoxidized polymers, are also emphasized. Determination of dissolved gases (for example O2, NO, and NO2), ions (sulfite, nitrite, nitrate, chlorate, bromate, and iodate) and smaller and larger molecules (for example H2O2, ascorbic acid (AA), dopamine (DA), urea (UA), amino acids, hydrazine, NADH, serotonin, and epinephrine) is discussed. These achievements are reviewed from the materials perspective, addressing both synthetic and electrocatalytic aspects of the polymer-based modified electrodes. Beyond simple or more sophisticated mixing, a wide range of methods of preparation is presented, including chemical (one-pot polymerization, impregnation), electrochemical (co-deposition, doping type inclusion, etc.) and combined strategies. Classification of such synthetic routes is also included. However, it is important to note that we omit studies in which conducting polymers alone were used for determination of different species. Furthermore, because excellent reviews—cited in this work also—are available on immobilization of biomolecules (for example enzymes) for biosensing purposes, this topic, also, is excluded.
ChemPhysChem | 2013
Krishnan Rajeshwar; Norma R. de Tacconi; Ghazaleh Ghadimkhani; Wilaiwan Chanmanee; Csaba Janáky
Solar photoelectrochemical reduction of carbon dioxide to methanol in aqueous media was driven on hybrid CuO/Cu2O semiconductor nanorod arrays for the first time. A two-step synthesis was designed and demonstrated for the preparation of these hybrid copper oxide one-dimensional nanostructures on copper substrates. The first step consisted in the growth of CuO nanorods by thermal oxidation of a copper foil at 400 °C. In the second step, controlled electrodeposition of p-type Cu2O crystallites on the CuO walls was performed. The resulting nanorod morphology with controllable wall thickness by adjusting the Cu2O electrodeposition time as well as their surface/bulk chemical composition were probed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. Photoelectrosynthesis of methanol from carbon dioxide was demonstrated at -0.2 V vs SHE under simulated AM1.5 solar irradiation on optimized hybrid CuO/Cu2O nanorod electrodes and without assistance of any homogeneous catalyst (such as pyridine or imidazole) in the electrolyte. The hybrid composition, ensuring double pathway for photoelectron injection to CO2, along with high surface area were found to be crucial for efficient performance in methanol generation under solar illumination. Methanol formation, tracked by gas chromatography/mass spectrometry, indicated Faradaic efficiencies of ~95%.
Langmuir | 2010
Csaba Janáky; Gábor Bencsik; Árpád Rácz; Csaba Visy; Norma R. de Tacconi; Wilaiwan Chanmanee; Krishnan Rajeshwar
This study focuses on electrodeposition for infiltrating in situ a conducting polymer such as poly(3,4-ethylenedioxythiophene) (PEDOT) into a host titanium dioxide (TiO(2)) nanotube array (NTA) framework. The TiO(2) NTA was electrosynthesized on titanium foil in turn by anodization in a fluoride-containing medium. The PEDOT layer was electrografted into the TiO(2) NTA framework using a two-step potentiostatic growth protocol in acetonitrile containing supporting electrolyte. The nanoscopic features of oligomer/polymer infiltration and deposition in the NTA interstitial voids were monitored by field-emission scanning electron microscopy. Systematic changes in the nanotube inner diameter and the wall thickness afforded insights into the evolution of the TiO(2)NTA/PEDOT hybrid assembly. This assembly was subsequently characterized by UV-visible diffuse reflectance, cyclic voltammetry, and photoelectrochemical measurements. These data serve as a prelude to further use of these hybrids in heterojunction solar cells.
Chemsuschem | 2015
Abegayl Thomas; Csaba Janáky; Gergely F. Samu; Muhammad N. Huda; Pranab Sarker; J. Ping Liu; Vuong Van Nguyen; Evelyn H. Wang; Kevin A. Schug; Krishnan Rajeshwar
In the search for stable and efficient photocatalysts beyond TiO2 , the tungsten-based oxide semiconductors silver tungstate (Ag2 WO4 ), copper tungstate (CuWO4 ), and zinc tungstate (ZnWO4 ) were prepared using solution combustion synthesis (SCS). The tungsten precursors influence on the product was of particular relevance to this study, and the most significant effects are highlighted. Each samples photocatalytic activity towards methyl orange degradation was studied and benchmarked against their respective commercial oxide sample obtained by solid-state ceramic synthesis. Based on the results herein, we conclude that SCS is a time- and energy-efficient method to synthesize crystalline binary tungstate nanomaterials even without additional excessive heat treatment. As many of these photocatalysts possess excellent photocatalytic activity, the discussed synthetic strategy may open sustainable materials chemistry avenues to solar energy conversion and environmental remediation.
Journal of the American Chemical Society | 2017
Egon Kecsenovity; Balázs Endrődi; Peter S. Toth; Yuqin Zou; Robert A. W. Dryfe; Krishnan Rajeshwar; Csaba Janáky
Combination of an oxide semiconductor with a highly conductive nanocarbon framework (such as graphene or carbon nanotubes) is an attractive avenue to assemble efficient photoelectrodes for solar fuel generation. To fully exploit the possible synergies of the hybrid formation, however, precise knowledge of these systems is required to allow rational design and morphological engineering. In this paper, we present the controlled electrochemical deposition of nanocrystalline p-Cu2O on the surface of different graphene substrates. The developed synthetic protocol allowed tuning of the morphological features of the hybrids as deduced from electron microscopy. (Photo)electrochemical measurements (including photovoltammetry, electrochemical impedance spectroscopy, photocurrent transient analysis) demonstrated better performance for the 2D graphene containing photoelectrodes, compared to the bare Cu2O films, the enhanced performance being rooted in suppressed charge carrier recombination. To elucidate the precise role of graphene, comparative studies were performed with carbon nanotube (CNT) films and 3D graphene foams. These studies revealed, after allowing for the effect of increased surface area, that the 3D graphene substrate outperformed the other two nanocarbons. Its interconnected structure facilitated effective charge separation and transport, leading to better harvesting of the generated photoelectrons. These hybrid assemblies are shown to be potentially attractive candidates in photoelectrochemical energy conversion schemes, namely CO2 reduction.
ChemPhysChem | 2012
Norma R. de Tacconi; Hari Timmaji; Wilaiwan Chanmanee; Muhammad N. Huda; Pranab Sarker; Csaba Janáky; Krishnan Rajeshwar
Silver bismuth tungstate (AgBiW(2)O(8)) nanoparticles were prepared for the first time by solution combustion synthesis by using the corresponding metal nitrates as the precursor and urea as the fuel. These nanoparticles were subsequently modified with Pt catalyst islands using a photocatalytic procedure and used for the photogeneration of syngas (CO+H(2)). Formic acid was used for this purpose for the in situ generation of CO(2) and its subsequent reduction to CO. In the absence of Pt modification, H(2) was not obtained in the gas products evolved. These results were compared with those obtained with acetic acid in place of formic acid. The combustion process was simulated by thermogravimetry and the synthesized powder was characterized using transmission electron microscopy, diffuse reflectance UV/Vis spectroscopy, X-ray diffraction, surface area measurements, and X-ray photoelectron spectroscopy. Tauc plots derived from the diffuse reflectance data yielded an optical band gap of 2.74 eV. The photocatalytic activity of these nanoparticles was superior to a sample prepared by solid-state synthesis. Mechanistic aspects are finally presented, as are structural models and electronic calculations, using density functional theory (DFT).
RSC Advances | 2014
Balázs Endrődi; János Mellár; Zoltan Gingl; Csaba Visy; Csaba Janáky
Enhanced thermoelectric properties of poly(3-hexylthiophene) nanofiber networks, doped in their reaction with silver cations, are presented. The role of charge carrier concentration and mobility (influenced by the supramolecular structure and nanoscale morphology) is discussed. The nanonet structure leads to a six fold increase in the ZT value compared to the bulk polymer counterpart.
Journal of Physical Chemistry B | 2012
Peter S. Toth; Csaba Janáky; Ottó Berkesi; Tarmo Tamm; Csaba Visy
The ionic motion in connection with the redox transformation of poly(3,4-ethylenedioxythiophene) (PEDOT) conjugated polymer have been studied by both experimental-electrochemical (electrochemical quartz crystal nanobalance, EQCN) and spectroscopic (infrared spectroscopy, IR-ATR)-and theoretical methods. The observations have been completed by direct, semiquantitative analytical data, provided by energy dispersive X-ray (EDX) microanalysis. The EQCN results suggested an anomalous behavior, since only cationic movements have been observed for films deposited from chloride solutions. Chloride ions were proved to be immobile also when bulky tetrabutylammonium (Bu(4)N(+)) cations were substituted with even larger (hexadecyltrimethylammonium) cations. Since PEDOT films synthesized in the presence of other spherical, not too large anions-such as perchlorate and tetrafluoroborate-endowed mixed ion exchange behavior together with the Bu(4)N(+) cation, the possibility of a special interaction between chloride and the polymeric chain has been assumed. Semiempirical and DFT calculations indicated that chloride ions interact with the α carbon atoms of the thiophene rings of the oxidized EDOT oligomers, creating sp(3) type perturbations in the polymer chain. FTIR-ATR spectra evidenced the appearance of C-Cl bonds. Elementary analysis, performed by EDX spectroscopy with eight polymer samples at different doping levels clearly showed the permanent presence of constant amount of chlorine, independently of the oxidation state of the PEDOT layer. Finally, the presented observations call attention to the fact that unique dopant-polymer interactions during the electrochemical polymerization are of prime importance, being able to rule over conventions for the charge compensation of conjugated polymers, often solely based on steric parameters.
RSC Advances | 2015
Ágnes Veres; Judit Ménesi; Csaba Janáky; Gergely F. Samu; Martin Karl Scheyer; Qisong Xu; Fatma Salahioglu; Marc Garland; Imre Dékány; Ziyi Zhong
This work systematically investigated the relationship between structure, morphology, photoelectrochemical (PEC) and photocatalytic (PC) properties of TiO2 catalysts. A series of TiO2 catalysts with various phase compositions (anatase-, brookite- and finally rutile-rich samples) and morphologies (1D morphology, rhomboid nanoparticles (NPs) and flower-like assemblies of nanorods) were prepared by an acidic hydrothermal treatment of hydrogen titanate nanofibres (H-TNFs). The structures of the samples, such as crystal phase composition and their spatial distribution, were extensively characterised, and the samples were tested for photocatalytic degradation of ethanol. A strong correlation is found between PEC and PC properties. PEC measurements revealed that the brookite-rich samples generated high but unstable photocurrents. The anatase and rutile-rich samples showed good stability, but for the rutile-rich samples low photocurrents were detected due to the poor conductivity of this polymorph. In contrast, the sample containing 93.2% anatase and 6.8% brookite with elongated morphology not only showed the ability to generate high photocurrents but also maintained a stable photoresponse upon an extended period of time, because of its well-balanced bi-crystalline structure and elongated morphology. Therefore, the abilities to generate high photocurrents and to maintain a stable photoresponse are equally important and probably a prerequisite for a good photocatalyst.
Materials | 2016
Attila Kormányos; Balázs Endrődi; Róbert Ondok; András Sápi; Csaba Janáky
Hybrid materials of electrically conducting polymers and inorganic semiconductors form an exciting class of functional materials. To fully exploit the potential synergies of the hybrid formation, however, sophisticated synthetic methods are required that allow for the fine-tuning of the nanoscale structure of the organic/inorganic interface. Here we present the photocatalytic deposition of a conducting polymer (polyaniline) on the surface of silicon carbide (SiC) nanoparticles. The polymerization is facilitated on the SiC surface, via the oxidation of the monomer molecules by ultraviolet-visible (UV-vis) light irradiation through the photogenerated holes. The synthesized core–shell nanostructures were characterized by UV-vis, Raman, and Fourier Transformed Infrared (FT-IR) Spectroscopy, thermogravimetric analysis, transmission and scanning electron microscopy, and electrochemical methods. It was found that the composition of the hybrids can be varied by simply changing the irradiation time. In addition, we proved the crucial importance of the irradiation wavelength in forming conductive polyaniline, instead of its overoxidized, insulating counterpart. Overall, we conclude that photocatalytic deposition is a promising and versatile approach for the synthesis of conducting polymers with controlled properties on semiconductor surfaces. The presented findings may trigger further studies using photocatalysis as a synthetic strategy to obtain nanoscale hybrid architectures of different semiconductors.