Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Csaba Sándor is active.

Publication


Featured researches published by Csaba Sándor.


Journal of Combinatorial Theory | 2007

An upper bound for Hilbert cubes

Csaba Sándor

In this note we give a new upper bound for the largest size of subset of {1,2,...,n} not containing a k-cube.


Publicationes Mathematicae Debrecen | 2014

Groups, partitions and representation functions

Sándor Z. Kiss; Eszter Rozgonyi; Csaba Sándor

Let X be a semigroup written additively and h ≥ 2 a fixed integer. Let x be an element of X and A1, . . . , Ah be nonempty subsets of X. Let RA1+···+Ah(x) denote the number of solutions of the equation a1 + · · · + ah = x, where ai ∈ Ai. In this paper for X = N we give a necessary and sufficient condition such that the equality RA1+A2(n) = RX\A1+X\A2(n) holds from a certain point on. We study similar questions when X = Zm and in general when X = G, where G is a finite additive group.


International Journal of Number Theory | 2016

On the maximum values of the additive representation functions

Sándor Z. Kiss; Csaba Sándor

Let A and B be infinite sequences of nonnegative integers. For a positive integer n, let RA(n) denote the number of representations of n as the sum of two terms from A. Let sA(x) denote the maximum value of RA(n) up to x and dA,B(x) denote the distance of the sequences A and B. In this paper, we study the connection between sA(x), sB(x) and dA,B(x). We improve a result of Haddad and Helou about the Erdős–Turan conjecture.


Acta Mathematica Hungarica | 2018

On generalized Stanley sequences

Sándor Z. Kiss; Csaba Sándor; Quan-Hui Yang

Let


Combinatorica | 2017

An extension of Nathanson’s Theorem on representation functions

Eszter Rozgonyi; Csaba Sándor


European Journal of Combinatorics | 2019

On infinite multiplicative Sidon sets

Péter Pál Pach; Csaba Sándor

{\mathbb{N}}


SIAM Journal on Discrete Mathematics | 2018

On a Conjecture of Erdös about Sets without

Sándor Z. Kiss; Csaba Sándor; Quan-Hui Yang


Combinatorica | 2017

k

Péter Pál Pach; Csaba Sándor

N denote the set of all nonnegative integers. Let


arXiv: Number Theory | 2014

Pairwise Coprime Integers

Sándor Z. Kiss; Eszter Rozgonyi; Csaba Sándor


Journal of Number Theory | 2014

Multiplicative bases and an Erdős problem

Sándor Z. Kiss; Eszter Rozgonyi; Csaba Sándor

{k \ge 3}

Collaboration


Dive into the Csaba Sándor's collaboration.

Top Co-Authors

Avatar

Sándor Z. Kiss

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Quan-Hui Yang

Nanjing University of Information Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Eszter Rozgonyi

Budapest University of Technology and Economics

View shared research outputs
Top Co-Authors

Avatar

Péter Pál Pach

Eötvös Loránd University

View shared research outputs
Researchain Logo
Decentralizing Knowledge