Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Csaba Szántai-Kis is active.

Publication


Featured researches published by Csaba Szántai-Kis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2014

NADPH Oxidase 4 Is Expressed in Pulmonary Artery Adventitia and Contributes to Hypertensive Vascular Remodeling

Scott A. Barman; Feng Chen; Yunchao Su; Christiana Dimitropoulou; Yusi Wang; John D. Catravas; Weihong Han; Laszlo Orfi; Csaba Szántai-Kis; György Kéri; István Szabadkai; Nektarios Barabutis; Olga Rafikova; Ruslan Rafikov; Stephen M. Black; Danny Jonigk; Athanassios Giannis; Reto Asmis; David W. Stepp; Ganesan Ramesh; David J.R. Fulton

Objective— Pulmonary hypertension (PH) is a progressive disease arising from remodeling and narrowing of pulmonary arteries (PAs) resulting in high pulmonary blood pressure and ultimately right ventricular failure. Elevated production of reactive oxygen species by NADPH oxidase 4 (Nox4) is associated with increased pressure in PH. However, the cellular location of Nox4 and its contribution to aberrant vascular remodeling in PH remains poorly understood. Therefore, we sought to identify the vascular cells expressing Nox4 in PAs and determine the functional relevance of Nox4 in PH. Approach and Results— Elevated expression of Nox4 was detected in hypertensive PAs from 3 rat PH models and human PH using qualititative real-time reverse transcription polymerase chain reaction, Western blot, and immunofluorescence. In the vascular wall, Nox4 was detected in both endothelium and adventitia, and perivascular staining was prominently increased in hypertensive lung sections, colocalizing with cells expressing fibroblast and monocyte markers and matching the adventitial location of reactive oxygen species production. Small-molecule inhibitors of Nox4 reduced adventitial reactive oxygen species generation and vascular remodeling as well as ameliorating right ventricular hypertrophy and noninvasive indices of PA stiffness in monocrotaline-treated rats as determined by morphometric analysis and high-resolution digital ultrasound. Nox4 inhibitors improved PH in both prevention and reversal protocols and reduced the expression of fibroblast markers in isolated PAs. In fibroblasts, Nox4 overexpression stimulated migration and proliferation and was necessary for matrix gene expression. Conclusion— These findings indicate that Nox4 is prominently expressed in the adventitia and contributes to altered fibroblast behavior, hypertensive vascular remodeling, and development of PH.


Current Medicinal Chemistry | 2008

Signalling Inhibitors Against Mycobacterium tuberculosis – Early Days of a New Therapeutic Concept in Tuberculosis

R. Szekely; Zoltán Varga; R. Kiss; Gábor Borbély; Gábor Németh; Péter Bánhegyi; János Pató; Zoltán Greff; Zoltán Horváth; G. Meszaros; Jenö Marosfalvi; D. Eros; Csaba Szántai-Kis; Nóra Breza; S. Garavaglia; S. Perozzi; M. Rizzi; Doris Hafenbradl; Mary Ko; Yossef Av-Gay; Bert Klebl; Laszlo Orfi; György Kéri

Tuberculosis causes nearly two million deaths per year world-wide. In addition multidrug-resistant mycobacterial strains rapidly emerge so novel therapeutic approaches are needed. Recently, several promising mycobacterial target molecules were identified, which are involved in bacterial or host cell signalling e.g. the serine/threonine protein kinases, PknB and PknG, NAD kinase and the NAD synthetase. Here we describe some early efforts in the development of novel signal transduction inhibitory anti-mycobacterial drugs using a multiple target approach, with special emphasis on the kinase inhibitory field. Initially, we are using the Nested Chemical Library (NCL) technology and pharmacophore modelling. A hit-finding library, consisting of approximately 19000 small molecules with a bias for prototypic kinase inhibitors from our NCL library and commercial sources was virtually screened against these validated target molecules. Protein structures for the virtual screening were taken from the published three dimensional crystal structures of the enzymes. The hits from the virtual screening were subsequently tested in enzymatic assay systems. Potent hits were then tested for biological activity in macrophages, infected with mycobacteria. The final goal of this exercise is not only to identify potent anti-mycobacterial substances, but also a common pharmacophore for the mycobacterial target PknG in combination with PknB, NAD kinase and/or NAD synthetase. This common pharmacophore still needs to be a unique pharmacophore for the mycobacterial target proteins over human off-targets. Such a pharmacophore might then drive the optimization of a completely new profile of an antibiotic agent with activity against latent mycobacteria and resistance mycobacterial strains.


Current Medicinal Chemistry | 2011

Novel, Selective CDK9 Inhibitors for the Treatment of HIV Infection

Gábor Németh; Zoltán Varga; Zoltán Greff; G. Bencze; Anna Sipos; Csaba Szántai-Kis; Ferenc Baska; Ágnes Gyuris; Katalin Kelemenics; Z. Szathmary; Janos Minarovits; György Kéri; Laszlo Orfi

Cyclin Dependent Kinases (CDKs) are important regulators of cell cycle and gene expression. Since an up-to-date review about the pharmacological inhibitors of CDK family (CDK1-10) is not available; therefore in the present paper we briefly summarize the most relevant inhibitors and point out the low number of selective inhibitors. Among CDKs, CDK9 is a validated pathological target in HIV infection, inflammation and cardiac hypertrophy; however selective CDK9 inhibitors are still not available. We present a selective inhibitor family of CDK9 based on the 4-phenylamino-6- phenylpyrimidine nucleus. We show a convenient synthetic method to prepare a useful intermediate and its derivatisation resulting in novel compounds. The CDK9 inhibitory activity of the derivatives was measured in specific kinase assay and the CDK inhibitory profile of the best ones (IC(50) < 100 nM) was determined. The most selective compounds had high selectivity over CDK1, 2, 3, 5, 6, 7 and showed at least one order of magnitude higher inhibitory activity over CDK4 inhibition. The most selective molecules were examined in cytotoxicity assays and their ability to inhibit HIV-1 replication was determined in cellular assays.


Tuberculosis | 2015

Lead selection and characterization of antitubercular compounds using the Nested Chemical Library

Anna Sipos; János Pató; Rita Székely; Ruben C. Hartkoorn; Laszlo Kekesi; Laszlo Orfi; Csaba Szántai-Kis; Katarína Mikušová; Zuzana Svetlíková; Jana Korduláková; Valakunja Nagaraja; Adwait Anand Godbole; Natassja G. Bush; Frédéric Collin; Anthony Maxwell; Stewart T. Cole; Gyoergy Keri

Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichems Nested Chemical Library™ using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 μM and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays.


Current Medicinal Chemistry | 2006

Prediction Oriented QSAR Modelling of EGFR Inhibition

Csaba Szántai-Kis; István Kövesdi; D. Eros; Péter Bánhegyi; Axel Ullrich; György Kéri; Laszlo Orfi

Epidermal Growth Factor Receptor (EGFR) is a high priority target in anticancer drug research. Thousands of very effective EGFR inhibitors have been developed in the last decade. The known inhibitors are originated from a very diverse chemical space but--without exception--all of them act at the Adenosine TriPhosphate (ATP) binding site of the enzyme. We have collected all of the diverse inhibitor structures and the relevant biological data obtained from comparable assays and built prediction oriented Quantitative Structure-Activity Relationship (QSAR) which models the ATP binding pockets interactive surface from the ligand side. We describe a QSAR method with automatic Variable Subset Selection (VSS) by Genetic Algorithm (GA) and goodness-of-prediction driven QSAR model building, resulting an externally validated EGFR inhibitory model built from pIC50 values of a diverse structural set of 623 EGFR inhibitors. Repeated Trainings/Evaluations (RTE) were used to obtain model fitness values and the effectiveness of VSS is amplified by using predictive ability scores of descriptors. Numerous models were generated by different methods and viable models were collected. Then, intensive RTE were applied to identify ultimate models for external validations. Finally, suitable models were validated by statistical tests. Since we use calculated molecular descriptors in the modeling, these models are suitable for virtual screening for obtaining novel potential EGFR inhibitors.


Journal of Biomolecular Screening | 2016

Development of a 3D Tissue Culture–Based High-Content Screening Platform That Uses Phenotypic Profiling to Discriminate Selective Inhibitors of Receptor Tyrosine Kinases

Tijmen H. Booij; Maarten Klop; Kuan Yan; Csaba Szántai-Kis; Bálint Szokol; Laszlo Orfi; Bob van de Water; György Kéri; Leo Price

3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting.


Current Medicinal Chemistry | 2013

Developing FGFR4 Inhibitors As Potential Anti-Cancer Agents Via In Silico Design, Supported by In Vitro and Cell-Based Testing

Han Kiat Ho; Gábor Németh; Y. R. Ng; E. Pang; Csaba Szántai-Kis; Zsákai L; Nóra Breza; Zoltán Greff; Zoltán Horváth; János Pató; István Szabadkai; Bálint Szokol; Ferenc Baska; Laszlo Orfi; Axel Ullrich; György Kéri; Boon Tin Chua

Fibroblast growth factor receptor-4 (FGFR4) is a tyrosine kinase with a range of important physiological functions. However, it is also frequently mutated in various cancers and is now generating significant interest as a potential therapeutic target. Unfortunately, biochemical characterization of its role in disease, and further evaluation as a drug target is hampered by lack of a specific inhibitor. We aimed to discover new inhibitors for FGFR4 ab initio using a strategy combining in silico, in vitro and cell-based assays. We used the homologous FGFR1 to calculate docking scores of a chemically-diverse library of approximately 2000 potential kinase inhibitors. Nineteen potential inhibitors and ten randomly- selected negative controls were taken forward for in vitro FGFR4 kinase assays. All compounds with good docking scores significantly inhibited FGFR4 kinase activity, some with sub-micromolar (most potent being V4-015 with an IC(50) of 0.04 μM). Four of these compounds also demonstrated substantial activity in cellular assays using the FGFR4- overexpressing breast carcinoma cell line, MDA-MB453. Through immunoblot assays, these compounds were shown to block the phosphorylation of the FGFR4 adaptor protein, FGFR substrate protein-2α (FRS2α). The most potent compound to date, V4-015, suppressed proliferation of MDA-MB453 cells at sub-micromolar concentrations, activated the pro-apoptotic caspases 3/7 and inhibited cellular migration. While achieving complete selectivity of this compound for FGFR4 will require further lead optimization, this study has successfully identified new chemical scaffolds with unprecedented FGFR4 inhibition capacities that will support mechanism of action studies and future anti-cancer drug design.


ACS Medicinal Chemistry Letters | 2014

Discovery and Biological Evaluation of Novel Dual EGFR/c-Met Inhibitors.

Bálint Szokol; Pál Gyulavári; Ibolya Kurkó; Ferenc Baska; Csaba Szántai-Kis; Zoltán Greff; Z. Orfi; István Peták; Kinga Penzes; Robert Torka; Axel Ullrich; Laszlo Orfi; Tibor Vántus; György Kéri

Activating mutations in the epidermal growth factor receptor (EGFR) have been identified in a subset of non-small cell lung cancer (NSCLC), which is one of the leading cancer types worldwide. Application of EGFR tyrosine kinase inhibitors leads to acquired resistance by secondary EGFR mutations or by amplification of the hepatocyte growth factor receptor (c-Met) gene. Although several EGFR and c-Met inhibitors have been reported, potent dual EGFR/c-Met inhibitors, which can overcome this latter resistance mechanism, have hitherto not been published and have not reached clinical trials. In the present study we have identified dual EGFR/c-Met inhibitors and designed novel N-[4-(quinolin-4-yloxy)-phenyl]-biarylsulfonamide derivatives, which inhibit the c-Met receptor and both the wild-type and the activating mutant EGFR kinases in nanomolar range. We have demonstrated by Western blot analysis that compound 10 inhibits EGFR and c-Met phosphorylation at cellular level and effectively inhibits viability of the NSCLC cell lines.


Current Medicinal Chemistry | 2014

Pharmacophore and binding analysis of known and novel B-RAF kinase inhibitors.

Ferenc Baska; István Szabadkai; Anna Sipos; Nóra Breza; Csaba Szántai-Kis; Laszlo Kekesi; Rita Garamvölgyi; Zoltán Nemes; L. Neumann; Robert Torka; Axel Ullrich; György Kéri; Laszlo Orfi

The extensively investigated serine/threonine kinase, B-RAF, is a member of the RAS/RAF/MEK/ERK pathway. It plays important role in the regulation of cell growth, differentiation and survival. The mutation of B-RAF occurs frequently in melanomas and colon tumors; therefore, it is considered as an outstanding therapeutic target. In recent years a great number of B-RAF inhibitors have been reported and this number is expected to increase. The aim of our work was to compare the structures and binding mode of the published B-RAF inhibitors, and then to apply the correlations found for the explanation of our experimental results. In the first part of this paper we describe the main pharmacophore features of the co-crysallized B-RAF inhibitors published in the literature, focusing on the binding modes and common structural elements. In the second part we present and characterize our recently developed B-RAF inhibitor family by application of in silico methods and in vitro kinetic profiling. The inhibitory activity of these compounds was determined in biochemical kinase- and cell-based assays. The docking and assay results support our conclusion that the presented compound family belongs to the type I 1/2 subgroup, they inhibit B-RAF and B-RAF(V600E) mutant in a sub-micromolar range and most of them show selectivity towards B-RAF(V600E) mutant expressing cell lines with equal or even better IC50 values than sorafenib.


Epilepsia | 2011

Protein kinase inhibitor as a potential candidate for epilepsy treatment

Zita Gajda; Rita Török; Zoltán Horváth; Csaba Szántai-Kis; Laszlo Orfi; György Kéri; Magdolna Szente

Purpose:  Effects of the “VID‐82925” kinase inhibitor molecule were investigated both during the developing phase as well as during the stable phase of the focus with spontaneous recurrent seizures using the 4‐AP‐induced in vivo epilepsy model in anesthetized rats.

Collaboration


Dive into the Csaba Szántai-Kis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zoltán Greff

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

János Pató

Hungarian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zoltán Horváth

Eötvös Loránd University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge