Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Csanad Varallyay is active.

Publication


Featured researches published by Csanad Varallyay.


Journal of Cerebral Blood Flow and Metabolism | 2010

Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review

Jason S. Weinstein; Csanad Varallyay; Edit Dósa; Seymur Gahramanov; Bronwyn E. Hamilton; William D. Rooney; Leslie L. Muldoon; Edward A. Neuwelt

Superparamagnetic iron oxide nanoparticles have diverse diagnostic and potential therapeutic applications in the central nervous system (CNS). They are useful as magnetic resonance imaging (MRI) contrast agents to evaluate: areas of blood–brain barrier (BBB) dysfunction related to tumors and other neuroinflammatory pathologies, the cerebrovasculature using perfusion-weighted MRI sequences, and in vivo cellular tracking in CNS disease or injury. Novel, targeted, nanoparticle synthesis strategies will allow for a rapidly expanding range of applications in patients with brain tumors, cerebral ischemia or stroke, carotid atherosclerosis, multiple sclerosis, traumatic brain injury, and epilepsy. These strategies may ultimately improve disease detection, therapeutic monitoring, and treatment efficacy especially in the context of antiangiogenic chemotherapy and antiinflammatory medications. The purpose of this review is to outline the current status of superparamagnetic iron oxide nanoparticles in the context of biomedical nanotechnology as they apply to diagnostic MRI and potential therapeutic applications in neurooncology and other CNS inflammatory conditions.


Kidney International | 2009

Ultrasmall superparamagnetic iron oxides (USPIOs): A future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)?

Edward A. Neuwelt; Bronwyn E. Hamilton; Csanad Varallyay; William R. Rooney; Robert D. Edelman; Paula Jacobs; Suzanne Watnick

Gadolinium (Gd) based contrast agents (GBCAs) in magnetic resonance imaging (MRI) are used in daily clinical practice and appear safe in most patients; however, nephrogenic systemic fibrosis (NSF) is a recently recognized severe complication associated with GBCAs. It affects primarily patients with renal disease, such as stage 4 or 5 chronic kidney disease (CKD; glomerular filtration rate <30 ml/min per 1.73 m(2)), acute kidney injury, or kidney and liver transplant recipients with kidney dysfunction. Contrast-enhanced MRI and computed tomography (CT) scans provide important clinical information and influence patient management. An alternative contrast agent is needed to obtain adequate imaging results while avoiding the risk of NSF in this vulnerable patient group. One potential alternative is ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, which provide enhancement characteristics similar to GBCAs. We review our experience in approximately 150 patients on the potential benefits of the USPIOs ferumoxtran-10 and ferumoxytol. We focus on central nervous system (CNS) MRI but also review imaging of other vascular beds. Safety studies, including USPIO administration (ferumoxytol) as iron supplement therapy in CKD patients on and not on dialysis, suggest that decreased kidney function does not alter the safety profile. We conclude that for both CNS MR imaging and MR angiography, USPIO agents like ferumoxytol are a viable option for patients at risk for NSF.


Blood | 2013

Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature

Christoph Kleinschnitz; Peter Kraft; Angela Dreykluft; Ina Hagedorn; Kerstin Göbel; Michael K. Schuhmann; Friederike Langhauser; Xavier Helluy; Tobias Schwarz; Stefan Bittner; Christian T. Mayer; Marc Brede; Csanad Varallyay; Mirko Pham; Martin Bendszus; Peter M. Jakob; Tim Magnus; Sven G. Meuth; Yoichiro Iwakura; Alma Zernecke; Tim Sparwasser; Bernhard Nieswandt; Guido Stoll; Heinz Wiendl

We have recently identified T cells as important mediators of ischemic brain damage, but the contribution of the different T-cell subsets is unclear. Forkhead box P3 (FoxP3)-positive regulatory T cells (Tregs) are generally regarded as prototypic anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. In the present study, we examined the role of Tregs after experimental brain ischemia/reperfusion injury. Selective depletion of Tregs in the DEREG mouse model dramatically reduced infarct size and improved neurologic function 24 hours after stroke and this protective effect was preserved at later stages of infarct development. The specificity of this detrimental Treg effect was confirmed by adoptive transfer experiments in wild-type mice and in Rag1(-/-) mice lacking lymphocytes. Mechanistically, Tregs induced microvascular dysfunction in vivo by increased interaction with the ischemic brain endothelium via the LFA-1/ICAM-1 pathway and platelets and these findings were confirmed in vitro. Ablation of Tregs reduced microvascular thrombus formation and improved cerebral reperfusion on stroke, as revealed by ultra-high-field magnetic resonance imaging at 17.6 Tesla. In contrast, established immunoregulatory characteristics of Tregs had no functional relevance. We define herein a novel and unexpected role of Tregs in a primary nonimmunologic disease state.


Neurosurgery | 2007

The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: a pilot study.

Edward A. Neuwelt; Csanad Varallyay; Sandor Manninger; Diána Solymosi; Marianne Haluska; Matthew A. Hunt; Gary M. Nesbit; Alexander A. Stevens; Michael Jerosch-Herold; Paula Jacobs; John M. Hoffman

OBJECTIVEFerumoxytol, an iron oxide nanoparticle that targets phagocytic cells, can be used in magnetic resonance imaging of malignant brain tumors and can be administered as a bolus, allowing dynamic imaging. Our objectives were to determine the optimum time of delayed contrast enhancement of ferumoxytol, and to compare ferumoxytol and gadolinium contrast agents for magnetic resonance angiography and perfusion. METHODSTwelve patients with malignant brain tumors underwent serial magnetic resonance imaging multiple times up to 72 hours after ferumoxytol injection at both 1.5 and 3-T. The enhancement time course was determined for ferumoxytol and compared with a baseline gadolinium scan. Perfusion, time-of-flight and dynamic magnetic resonance angiography and T1-weighted scans were compared for the two agents. RESULTSThe lesions were detectable at all field strengths, even with an intraoperative 0.15-T magnet. Maximal ferumoxytol enhancement intensity was at 24 to 28 hours after administration, and the enhancing volume subsequently expanded with time into a non-gadolinium-enhancing, high T2-weighted signal region of tumor-infiltrated brain. Dynamic studies were assessed with both agents, indicating early vascular leak with gadolinium but not with ferumoxytol. CONCLUSIONOur most important finding was that gadolinium leaks out of blood vessels early after injection, whereas ferumoxytol stays intravascular in the “early” phase, thereby increasing the accuracy of tumor perfusion assessment. As a magnetic resonance imaging contrast agent, ferumoxytol visualizes brain tumors at all field strengths evaluated, with delayed enhancement peaking at 24 to 28 hours after administration.


International Journal of Radiation Oncology Biology Physics | 2011

Potential for Differentiation of Pseudoprogression From True Tumor Progression With Dynamic Susceptibility-Weighted Contrast-Enhanced Magnetic Resonance Imaging Using Ferumoxytol vs. Gadoteridol: A Pilot Study

Seymur Gahramanov; Ahmed M. Raslan; Leslie L. Muldoon; Bronwyn E. Hamilton; William D. Rooney; Csanad Varallyay; Jeffrey M. Njus; Marianne Haluska; Edward A. Neuwelt

PURPOSE We evaluated dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging (DSC-MRI) using gadoteridol in comparison to the iron oxide nanoparticle blood pool agent, ferumoxytol, in patients with glioblastoma multiforme (GBM) who received standard radiochemotherapy (RCT). METHODS AND MATERIALS Fourteen patients with GBM received standard RCT and underwent 19 MRI sessions that included DSC-MRI acquisitions with gadoteridol on Day 1 and ferumoxytol on Day 2. Relative cerebral blood volume (rCBV) values were calculated from DSC data obtained from each contrast agent. T1-weighted acquisition post-gadoteridol administration was used to identify enhancing regions. RESULTS In seven MRI sessions of clinically presumptive active tumor, gadoteridol-DSC showed low rCBV in three and high rCBV in four, whereas ferumoxytol-DSC showed high rCBV in all seven sessions (p = 0.002). After RCT, seven MRI sessions showed increased gadoteridol contrast enhancement on T1-weighted scans coupled with low rCBV without significant differences between contrast agents (p = 0.9). Based on post-gadoteridol T1-weighted scans, DSC-MRI, and clinical presentation, four patterns of response to RCT were observed: regression, pseudoprogression, true progression, and mixed response. CONCLUSION We conclude that DSC-MRI with a blood pool agent such as ferumoxytol may provide a better monitor of tumor rCBV than DSC-MRI with gadoteridol. Lesions demonstrating increased enhancement on T1-weighted MRI coupled with low ferumoxytol rCBV are likely exhibiting pseudoprogression, whereas high rCBV with ferumoxytol is a better marker than gadoteridol for determining active tumor. These interesting pilot observations suggest that ferumoxytol may differentiate tumor progression from pseudoprogression and warrant further investigation.


Radiology | 2013

Pseudoprogression of Glioblastoma after Chemo- and Radiation Therapy: Diagnosis by Using Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging with Ferumoxytol versus Gadoteridol and Correlation with Survival

Seymur Gahramanov; Leslie L. Muldoon; Csanad Varallyay; Xin Li; Dale F. Kraemer; Rongwei Fu; Bronwyn E. Hamilton; William D. Rooney; Edward A. Neuwelt

PURPOSE To compare gadoteridol and ferumoxytol for measurement of relative cerebral blood volume (rCBV) in patients with glioblastoma multiforme (GBM) who showed progressive disease at conventional magnetic resonance (MR) imaging after chemo- and radiation therapy (hereafter, chemoradiotherapy) and to correlate rCBV with survival. MATERIALS AND METHODS Informed consent was obtained from all participants before enrollment in one of four institutional review board-approved protocols. Contrast agent leakage maps and rCBV were derived from perfusion MR imaging with gadoteridol and ferumoxytol in 19 patients with apparently progressive GBM on conventional MR images after chemoradiotherapy. Patients were classified as having high rCBV (>1.75), indicating tumor, and low rCBV (≤ 1.75), indicating pseudoprogression, for each contrast agent separately, and with or without contrast agent leakage correction for imaging with gadoteridol. Statistical analysis was performed by using Kaplan-Meier survival plots with the log-rank test and Cox proportional hazards models. RESULTS With ferumoxytol, rCBV was low in nine (47%) patients, with median overall survival (mOS) of 591 days, and high rCBV in 10 (53%) patients, with mOS of 163 days. A hazard ratio of 0.098 (P = .004) indicated significantly improved survival. With gadoteridol, rCBV was low in 14 (74%) patients, with mOS of 474 days, and high in five (26%), with mOS of 156 days and a nonsignificant hazard ratio of 0.339 (P = .093). Five patients with mismatched high rCBV with ferumoxytol and low rCBV with gadoteridol had an mOS of 171 days. When leakage correction was applied, rCBV with gadoteridol was significantly associated with survival (hazard ratio, 0.12; P = .003). CONCLUSION Ferumoxytol as a blood pool agent facilitates differentiation between tumor progression and pseudoprogression, appears to be a good prognostic biomarker, and unlike gadoteridol, does not require contrast agent leakage correction.


Journal of Cerebral Blood Flow and Metabolism | 2009

Dynamic MRI using iron oxide nanoparticles to assess early vascular effects of antiangiogenic versus corticosteroid treatment in a glioma model

Csanad Varallyay; Leslie L. Muldoon; Seymur Gahramanov; Yingjen J Wu; James A. Goodman; Xin Li; Martin M. Pike; Edward A. Neuwelt

The vascular effects of antiangiogenic treatment may pose problems for evaluating brain tumor response based on contrast-enhanced magnetic resonance imaging (MRI). We used serial dynamic contrast-enhanced MRI at 12 T to assess vascular responses to antiangiogenic versus steroid therapy. Athymic rats with intracerebral U87MG human glioma (n = 17) underwent susceptibility-weighted perfusion MRI with ferumoxytol, a solely intravascular ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle, followed by T1-weighted dynamic gadodiamide-enhanced MRI to measure vascular permeability. Rats were imaged before and after 24, 48, and 72 h of treatment with the antiangiogenic agent bevacizumab or the corticosteroid dexamethasone. Contrast agent extravasation was seen rapidly after gadodiamide, but not with ferumoxytol administration. Bevacizumab significantly decreased the blood volume and decreased permeability in tumors as determined by increased time-to-peak enhancement. A single dose of 45 mg/kg bevacizumab resulted in changes analogous to dexamethasone given in an extremely high dose (12 mg/kg per day), and was significantly more effective than dexamethasone at 2 mg/kg per day. We conclude that dynamic perfusion MRI measurements with ferumoxytol USPIO to assess cerebral blood volume, along with dynamic gadodiamide-enhanced MR to assess vascular permeability, hold promise in more accurately detecting therapeutic responses to antiangiogenic therapy.


Journal of Cerebral Blood Flow and Metabolism | 2013

High-Resolution Steady-State Cerebral Blood Volume Maps in Patients with Central Nervous System Neoplasms Using Ferumoxytol, a Superparamagnetic Iron Oxide Nanoparticle

Csanad Varallyay; Eric Nesbit; Rongwei Fu; Seymur Gahramanov; Brendan Moloney; Eric Earl; Leslie L. Muldoon; Xin Li; William D. Rooney; Edward A. Neuwelt

Cerebral blood volume (CBV) measurement complements conventional magnetic resonance imaging (MRI) to indicate pathologies in the central nervous system (CNS). Dynamic susceptibility contrast (DSC) perfusion imaging is limited by low resolution and distortion. Steady-state (SS) imaging may provide higher resolution CBV maps but was not previously possible in patients. We tested the feasibility of clinical SS-CBV measurement using ferumoxytol, a nanoparticle blood pool contrast agent. SS-CBV measurement was analyzed at various ferumoxytol doses and compared with DSC-CBV using gadoteridol. Ninety nine two-day MRI studies were acquired in 65 patients with CNS pathologies. The SS-CBV maps showed improved contrast to noise ratios, decreased motion artifacts at increasing ferumoxytol doses. Relative CBV (rCBV) values obtained in the thalamus and tumor regions indicated good consistency between the DSC and SS techniques when the higher dose (510 mg) ferumoxytol was used. The SS-CBV maps are feasible using ferumoxytol in a clinical dose of 510 mg, providing higher resolution images with comparable rCBV values to the DSC technique. Physiologic imaging using nanoparticles will be beneficial in visualizing CNS pathologies with high vascularity that may or may not correspond with blood–brain barrier abnormalities.


Neuro-oncology | 2014

Evaluation of pseudoprogression in patients with glioblastoma multiforme using dynamic magnetic resonance imaging with ferumoxytol calls RANO criteria into question

Morad Nasseri; Seymur Gahramanov; Joao Prola Netto; Rongwei Fu; Leslie L. Muldoon; Csanad Varallyay; Bronwyn E. Hamilton; Edward A. Neuwelt

BACKGROUND Diagnosis of pseudoprogression in patients with glioblastoma multiforme (GBM) is limited by Response Assessment in Neuro-Oncology (RANO) criteria to 3 months after chemoradiotherapy (CRT). Frequency of pseudoprogression occurring beyond this time limit was determined. Survival comparison was made between pseudoprogression and true progression patients as determined by using perfusion magnetic resonance imaging with ferumoxytol (p-MRI-Fe). METHODS Fifty-six patients with GBM who demonstrated conventional findings concerning for progression of disease post CRT were enrolled in institutional review board-approved MRI protocols. Dynamic susceptibility-weighted contrast-enhanced p-MRI-Fe was used to distinguish true progression from pseudoprogression using relative cerebral blood volume (rCBV) values. rCBV of 1.75 was assigned as the cutoff value. Participants were followed up using RANO criteria, and survival data were analyzed. RESULTS Twenty-seven participants (48.2%) experienced pseudoprogression. Pseudoprogression occurred later than 3 months post CRT in 8 (29.6%) of these 27 participants (ie, 8 [14.3%] of the 56 patients meeting the inclusion criteria). Overall survival was significantly longer in participants with pseudoprogression (35.2 months) compared with those who never experienced pseudoprogression (14.3 months; P < .001). CONCLUSIONS Pseudoprogression presented after 3 months post CRT in a considerable portion of patients with GBM, which raises doubts about the value of the 3-month time limit of the RANO criteria. Accurate rCBV measurement (eg, p-MRI-Fe) is suggested when there are radiographical concerns about progression of disease in GBM patients, regardless of any time limit. Pseudoprogression correlates with significantly better survival outcomes.


Stroke | 2012

C1-Inhibitor Protects From Brain Ischemia-Reperfusion Injury by Combined Antiinflammatory and Antithrombotic Mechanisms

Nadine Heydenreich; Marc W. Nolte; Eva Göb; Friederike Langhauser; Marion Hofmeister; Peter Kraft; Christiane Albert-Weissenberger; Marc Brede; Csanad Varallyay; Kerstin Göbel; Sven G. Meuth; Bernhard Nieswandt; Gerhard Dickneite; Guido Stoll; Christoph Kleinschnitz

Background and Purpose— Inflammation and thrombosis are pathophysiological hallmarks of ischemic stroke still unamenable to therapeutic interventions. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is involved in stroke development. C1-inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-inhibitor in models of ischemic stroke. Methods— Male and female C57Bl/6 mice and rats of different ages were subjected to middle cerebral artery occlusion and treated with C1-inhibitor after 1 hour or 6 hours. Infarct volumes and functional outcomes were assessed between day 1 and day 7, and findings were validated by magnetic resonance imaging. Blood–brain barrier damage, thrombus formation, and the local inflammatory response were determined poststroke. Results— Treatment with 15.0 U C1-inhibitor, but not 7.5 U, 1 hour after stroke reduced infarct volumes by ≈60% and improved clinical scores in mice of either sex on day 1. This protective effect was preserved at later stages of infarction as well as in elderly mice and in another species, ie, rats. Delayed C1-inhibitor treatment still improved clinical outcome. Blood–brain barrier damage, edema formation, and inflammation were significantly lower compared with controls. Moreover, C1-inhibitor showed strong antithrombotic effects. Conclusions— C1-inhibitor is a multifaceted antiinflammatory and antithrombotic compound that protects from ischemic neurodegeneration in clinically meaningful settings.

Collaboration


Dive into the Csanad Varallyay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge