Csengele Barta
United States Department of Agriculture
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Csengele Barta.
Plant Journal | 2008
Alessio Fortunati; Csengele Barta; Federico Brilli; Mauro Centritto; Ina Zimmer; Jörg-Peter Schnitzler; Francesco Loreto
SUMMARY Black poplar (Populus nigra L.) plants grown at 25 and 35 degrees C were subjected to drought stress to assess the combined impact of two consequences of global climate change--rising temperature and drought--on isoprene biosynthesis and emission. At both temperatures, photosynthesis was inhibited by moderate drought, but isoprene emission only decreased when drought was prolonged. The mRNA transcript level, protein concentration and activity of isoprene synthase (ISPS) changed in concert with isoprene emission during drought stress. However, ISPS activity decreased before isoprene emission during drought development, indicating a tighter control of the emission at a transcriptional or post-transcriptional level under moderate drought stress, and at both temperatures. A residual isoprene emission was measured when photosynthesis was totally inhibited after 35 days of drought. This photosynthesis-independent emission of isoprene was probably dependent on a cytosolic carbon supply as all the properties of ISPS were drastically inhibited. Isoprene emission was associated with dark respiration during the entire drought stress period, and at both temperatures, indicating that the two processes are sustained by, but do not compete for, the same carbon source. Isoprene emission was directly related to phosphoenolpyruvate carboxylase activity in plants grown at 25 degrees C and inversely related in plants grown at 35 degrees C, suggesting a strong temperature control on the regulation of the pyruvate flowing from the cytosol to the plastidic isoprenoid biosynthetic pathway under drought stress and recovery. In re-watered plants, the temperature control on isoprene emission was suppressed, despite complete recovery of photosynthesis and ISPS activity similar to levels in plants subjected to mild drought stress. Our results reveal the overriding effects of drought on isoprene emission, possibly affecting protein level or substrate supply. These effects may largely offset the predicted impact of rising temperatures on the emission of isoprene in terrestrial ecosystems.
Plant Physiology | 2006
Csengele Barta; Francesco Loreto
It was investigated whether the methyl-erythritol phosphate (MEP) pathway that generates volatile isoprenoids and carotenoids also produces foliar abscisic acid (ABA) and controls stomatal opening. When the MEP pathway was blocked by fosmidomycin and volatile isoprenoid emission was largely suppressed, leaf ABA content decreased to about 50% and leaf stomatal conductance increased significantly. No effect of fosmidomycin was seen in leaves with constitutively high rates of stomatal conductance and in plant species with low foliar ABA concentration. In all other cases, isoprene emission was directly associated with foliar ABA, but ABA reduction upon MEP pathway inhibition was also observed in plant species that do not emit isoprenoids. Stomatal closure causing a midday depression of photosynthesis was also associated with a concurrent increase of isoprene emission and ABA content. It is suggested that the MEP pathway generates a labile pool of ABA that responds rapidly to environmental changes. This pool also regulates stomatal conductance, possibly when coping with frequent changes of water availability. MEP pathway inhibition by leaf darkening, and its down-regulation by exposure to elevated CO2, was also associated with a reduction of foliar ABA content. However, stomatal conductance was reduced, indicating that stomatal aperture is not regulated by the MEP-dependent foliar ABA pool, under these specific cases.
Plant Molecular Biology | 2010
Katja Behnke; Andreas Kaiser; Ina Zimmer; Nicolas Brüggemann; Dennis Janz; Andrea Polle; Rüdiger Hampp; Robert Hänsch; Jennifer Popko; Philippe Schmitt-Kopplin; Barbara Ehlting; Heinz Rennenberg; Csengele Barta; Francesco Loreto; Jörg-Peter Schnitzler
In plants, isoprene plays a dual role: (a) as thermo-protective agent proposed to prevent degradation of enzymes/membrane structures involved in photosynthesis, and (b) as reactive molecule reducing abiotic oxidative stress. The present work addresses the question whether suppression of isoprene emission interferes with genome wide transcription rates and metabolite fluxes in grey poplar (Populusxcanescens) throughout the growing season. Gene expression and metabolite profiles of isoprene emitting wild type plants and RNAi-mediated non-isoprene emitting poplars were compared by using poplar Affymetrix microarrays and non-targeted FT-ICR-MS (Fourier transform ion cyclotron resonance mass spectrometry). We observed a transcriptional down-regulation of genes encoding enzymes of phenylpropanoid regulatory and biosynthetic pathways, as well as distinct metabolic down-regulation of condensed tannins and anthocyanins, in non-isoprene emitting genotypes during July, when high temperature and light intensities possibly caused transient drought stress, as indicated by stomatal closure. Under these conditions leaves of non-isoprene emitting plants accumulated hydrogen peroxide (H2O2), a signaling molecule in stress response and negative regulator of anthocyanin biosynthesis. The absence of isoprene emission under high temperature and light stress resulted transiently in a new chemo(pheno)type with suppressed production of phenolic compounds. This may compromise inducible defenses and may render non-isoprene emitting poplars more susceptible to environmental stress.
Archives of Biochemistry and Biophysics | 2010
Csengele Barta; Alison M. Dunkle; Rebekka M. Wachter; Michael E. Salvucci
Inhibition of photosynthesis by heat has been linked to the instability of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) chaperone, Rubisco activase. Examination of the recombinant enzyme showed that ADP and ATP protected against inactivation, whereas Mg(2+) promoted inactivation. Heating caused aggregation of Rubisco activase characterized by disruption of secondary structure content and formation of insoluble protein. In contrast, incubation at room temperature without nucleotide caused the active approximately 660 kDa protein to form a soluble, but inactive aggregate of > 2 x 10(6) Da. Circular dichroism (CD) spectroscopy and fluorescence established that structural perturbations in the aggregate did not reduce alpha-helical content significantly. Differences in the thermal stability between wild type and mutant Rubisco activase were observed for the recombinant proteins and when the proteins were expressed in transgenic Arabidopsis. That the sensitivity of these plants to heat differs indicates that the thermal instability of Rubisco activase is a main determinant of the temperature-sensitivity of photosynthesis.
Environmental Pollution | 2009
Violeta Velikova; Tsonko Tsonev; Csengele Barta; Mauro Centritto; Dimitrina Koleva; Miroslava Stefanova; Mira Busheva; Francesco Loreto
To investigate the interactive effects of increasing [CO(2)] and heat wave occurrence on isoprene (IE) and methanol (ME) emissions, Platanus orientalis was grown for one month in ambient (380 micromol mol(-1)) or elevated (800 micromol mol(-1)) [CO(2)] and exposed to high temperature (HT) (38 degrees C/4 h). In pre-existing leaves, IE emissions were always higher but ME emissions lower as compared to newly-emerged leaves. They were both stimulated by HT. Elevated [CO(2)] significantly reduced IE in both leaf types, whereas it increased ME in newly-emerged leaves only. In newly-emerged leaves, elevated [CO(2)] decreased photosynthesis and altered the chloroplast ultrastructure and membrane integrity. These harmful effects were amplified by HT. HT did not cause any unfavorable effects in pre-existing leaves, which were characterized by inherently higher IE rates. We conclude that: (1) these results further prove the isoprenes putative thermo-protective role of membranes; (2) HT may likely outweigh the inhibitory effects of elevated [CO(2)] on IE in the future.
Photosynthesis Research | 2013
Rebekka M. Wachter; Michael E. Salvucci; A. Elizabete Carmo-Silva; Csengele Barta; Todor Genkov; Robert J. Spreitzer
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is prone to inactivation from non-productive binding of sugar-phosphates. Reactivation of Rubisco requires conformational remodeling by a specific chaperone, Rubisco activase. Rubisco activase from tobacco and other plants in the family Solanaceae is an inefficient activator of Rubisco from non-Solanaceae plants and from the green alga Chlamydomonas reinhardtii. To determine if the Rubisco small subunit plays a role in the interaction with Rubisco activase, a hybrid Rubisco (SSNT) composed of tobacco small subunits and Chlamydomonas large subunits was constructed. The SSNT hybrid, like other hybrid Rubiscos containing plant small subunits, supported photoautotrophic growth in Chlamydomonas, but growth in air was much slower than for cells containing wild-type Rubisco. The kinetic properties of the SSNT hybrid Rubisco were similar to the wild-type enzyme, indicating that the poor growth in air was probably caused by disruption of pyrenoid formation and the consequent impairment of the CO2concentrating mechanism. Recombinant Rubisco activase from Arabidopsis activated the SSNT hybrid Rubisco and hybrid Rubiscos containing spinach and Arabidopsis small subunits at rates similar to the rates with wild-type Rubisco. However, none of the hybrid Rubiscos was activated by tobacco Rubisco activase. That replacement of Chlamydomonas small subunits with plant small subunits does not affect the species-specific interaction between Rubisco and Rubisco activase suggests that the association is not dominated by the small subunits that surround the Rubisco central solvent channel. Therefore, the geometry of a side-on binding mode is more consistent with the data than a top-on or ring-stacking binding mode.
Methods of Molecular Biology | 2011
Csengele Barta; A. Elizabete Carmo-Silva; Michael E. Salvucci
Rubisco activase is a molecular chaperone that modulates the activation state of Rubisco by catalyzing the ATP-dependent removal of tightly-bound inhibitory sugar-phosphates from Rubiscos catalytic sites. This chapter reports methods developed for the purification of native and recombinant Rubisco activase from leaves and bacterial cells, respectively.
Methods of Molecular Biology | 2011
Csengele Barta; A. Elizabete Carmo-Silva; Michael E. Salvucci
Ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) activase functions as a mechano-chemical motor protein using the energy from ATP hydrolysis to contort the structure of its target protein, Rubisco. This action modulates the activation state of Rubisco by removing tightly-bound inhibitory sugar-phosphates from Rubiscos catalytic sites, thereby restoring the sites to catalytic competence. This chapter reports methods developed for assaying the two activities of Rubisco activase: ATP hydrolysis and Rubisco activation.
Physiologia Plantarum | 2010
Michael E. Salvucci; Csengele Barta; John A. Byers; Alberto Canarini
The stems and roots of the semiarid shrub guayule, Parthenium argentatum, contain a significant amount of natural rubber. Rubber accumulates in guayule when plants are vegetatively and reproductively dormant, complicating the relationship between growth/reproduction and product synthesis. To evaluate the factors regulating the partitioning of carbon to rubber, carbon assimilation and partitioning were measured in guayule plants that were grown under simulated summer- and winter-like conditions and under winter-like conditions with CO(2) enrichment. These conditions were used to induce vegetatively active and dormant states and to increase the source strength of vegetatively dormant plants, respectively. Rates of CO(2) assimilation, measured under growth temperatures and CO(2) , were similar for plants grown under summer- and winter-like conditions, but were higher with elevated CO(2) . After 5 months, plants grown under summer-like conditions had the greatest aboveground biomass, but the lowest levels of non-structural carbohydrates and rubber. In contrast, the amount of resin in the stems was similar under all growth conditions. Emission of biogenic volatile compounds was more than three-fold higher in plants grown under summer- compared with winter-like conditions. Taken together, the results show that guayule plants maintain a high rate of photosynthesis and accumulate non-structural carbohydrates and rubber in the vegetatively dormant state, but emit volatile compounds at a lower rate when compared with more vegetatively active plants. Enrichment with CO(2) in the vegetatively dormant state increased carbohydrate content but not the amount of rubber, suggesting that partitioning of assimilate to rubber is limited by sink strength in guayule.
Plant Cell and Environment | 2006
Francesco Loreto; Csengele Barta; Federico Brilli; Isabel Nogues