Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cuikun Lin is active.

Publication


Featured researches published by Cuikun Lin.


Applied Physics Letters | 2007

White light emission from Eu3+ in CaIn2O4 host lattices

Xiaoming Liu; Cuikun Lin; Jun Lin

CaIn2O4:xEu3+ (x=0.5%,1.0%,1.5%) phosphors were prepared by the Pechini sol-gel process [U.S. Patent No. 3,330,697 (1967)] and characterized by x-ray diffraction and photoluminescence and cathodoluminescence spectra as well as lifetimes. Under the excitation of 397nm ultraviolet light and low voltage electron beams, these phosphors show the emission lines of Eu3+ corresponding to D0,1,2,35-FJ7 (J=0,1,2,3,4) transitions from 400to700nm (whole visible spectral region) with comparable intensity, resulting in a white light emission with a quantum efficiency near 10%. The luminescence mechanism for Eu3+ in CaIn2O4 has been elucidated.


Journal of Colloid and Interface Science | 2011

Preparation and optical properties of silver nanowires and silver-nanowire thin films

QuocAnh Luu; Joshua M. Doorn; Mary T. Berry; Chaoyang Jiang; Cuikun Lin; P. Stanley May

Silver nanowires and silver-nanowire thin films have attracted much attention due to their extensive applications in Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Fluorescence (SEF). Thin films of silver nanowires within polyelectrolyte layers of poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) were fabricated by the Spin-Assisted Layer-by-Layer (SA-LbL) method. The surface coverage, thickness, and absorbance properties of the silver-nanowire films were controlled by the number of layers deposited. Both transverse and longitudinal surface plasmon (SP) modes of the silver-nanowires were observed in the absorbance spectra, as was evidence for nanowire interaction. Two-dimensional finite difference time-domain (2D FDTD) simulations predict that the maximum field enhancement occurs at the ends and cross-sectional edges of the wires for the longitudinal and transverse modes, respectively. Silver nanowires were synthesized by a facile, high-yield solvothermal approach, which can be easily manipulated to control the aspect ratio of the nanowires. The effects of polyvinylpyrrolidone (PVP) concentration and molecular weight on the growth of the silver nanowires, which are not documented in the original procedure, are discussed. It is shown that the growth mechanism for silver nanowires in the solvothermal synthesis is similar to that reported for the polyol synthesis.


Nano Letters | 2012

Tilted Face-Centered-Cubic Supercrystals of PbS Nanocubes

Zewei Quan; Welley Siu Loc; Cuikun Lin; Zhiping Luo; Kaikun Yang; Yuxuan Wang; Howard Wang; Zhongwu Wang; Jiye Fang

We demonstrate a direct fabrication of PbS nanocube supercrystals without size-selection pretreatment on the building blocks. Electron microscopic and synchrotron small angle X-ray scattering analyses confirm that nanocubes pack through a tilted face-centered-cubic (fcc) arrangement, that is, face-to-face along the <110>(super) direction, resulting in a real packing efficiency of as high as ∼83%. This new type of superstructure consisting of nanocubes as building blocks, reported here for the first time, is considered the most stable surfactant-capped nanocube superstructure determined by far.


Journal of Materials Chemistry | 2010

Layer-by-layer assembly of freestanding thin films with homogeneously distributed upconversion nanocrystals

Ying Bao; Quoc Anh N. Luu; Cuikun Lin; John M. Schloss; P. Stanley May; Chaoyang Jiang

We report a facile and highly-controlled approach to fabricating freestanding upconversion multilayer thin films containing homogeneously distributed lanthanide-doped nanocrystals. Citrate-coated NaYF4:17%Yb, 3%Er nanocrystals were synthesized using a single-phase high-boiling-point-solvent method, followed by ligand exchange. These hydrophilic upconversion nanocrystals were dispersed in freestanding multilayer polyelectrolyte thin films by layer-by-layer assembly over a sacrificial layer. We found that the nanocomposite multilayer thin films possess outstanding mechanical stability and exhibit NIR-to-visible upconversion luminescence. The effect of the hydrophilic ligand exchange on the upconversion properties of these nanocrystals was explored by characterizing the time evolution of upconversion emission following pulsed NIR excitation. It is found that the ligand-exchange process modestly reduces the intrinsic upconversion efficiency of the nanocrystals relative to the as-synthesized oleic acid coated product. Thin films with NIR-to-visible upconversion properties may be suitable for a variety of optical-device and sensing applications.


Journal of The Electrochemical Society | 2007

Host-sensitized luminescence of Dy3+, Pr3+, Tb3+ in polycrystalline SrIn2O4 for field emission displays

Xiaoming Liu; Cuikun Lin; Yan Luo; Jun Lin

SrIn2O4:Dy3+/Pr3+/Tb3+ white/red/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveal that the samples begin to crystallize at 800 degrees C and pure SrIn2O4 phase can be obtained at 900 degrees C. FE-SEM images indicate that the SrIn2O4:Dy3+, SrIn2O4:Pr3+, and SrIn2O4:Tb3+ samples consist of fine and spherical grains with size around 200-400 nm. Under the excitation of ultraviolet light and low-voltage electron beams (1 - 5 kV), the SrIn2O4:Dy3+, SrIn2O4: Pr3+, and SrIn2O4: Tb3+ phosphors show the characteristic emissions of Dy3+ (F-4(9/2) - H-6(15/2) at 492 nm and 4F(9/2) - 6H(13/2) at 581 nm, near white), Pr3+ (P-3(0) - H-3(4) at 493 nm, D-1(2) - H-3(4) at 606 nm, and P-3(0) - H-3(6) at 617 nm, red) and Tb3+ (D-5(4) - F-7(6,5,4,3) transitions dominated by D-5(4) - F-7(5) at 544 nm, green), respectively. All of the luminescence resulted from an efficient energy transfer from the SrIn2O4 host lattice to the doped Dy3+, Pr3+, and Tb3+ ions, and the luminescence mechanisms have been proposed.


Nano Letters | 2017

High-Indexed Pt3Ni Alloy Tetrahexahedral Nanoframes Evolved through Preferential CO Etching

Chenyu Wang; Lihua Zhang; Hongzhou Yang; Jinfong Pan; Jingyue Liu; Charles Dotse; Yiliang Luan; Rui Gao; Cuikun Lin; Jun Zhang; James P. Kilcrease; Xiao-Dong Wen; Shouzhong Zou; Jiye Fang

Chemically controlling crystal structures in nanoscale is challenging, yet provides an effective way to improve catalytic performances. Pt-based nanoframes are a new class of nanomaterials that have great potential as high-performance catalysts. To date, these nanoframes are formed through acid etching in aqueous solutions, which demands long reaction time and often yields ill-defined surface structures. Herein we demonstrate a robust and unprecedented protocol for facile development of high-performance nanoframe catalysts using size and crystallographic facet-controlled PtNi4 tetrahexahedral nanocrystals prepared through a colloidal synthesis approach as precursors. This new protocol employs the Mond process to preferentially dealloy nickel component in the ⟨100⟩ direction through carbon monoxide etching of carbon-supported PtNi4 tetrahexahedral nanocrystals at an elevated temperature. The resultant Pt3Ni alloy tetrahexahedral nanoframes possess an open, stable, and high-indexed microstructure, containing a segregated Pt thin layer strained to the Pt-Ni alloy surfaces and featuring a down-shift d-band center as revealed by the density functional theory calculations. These nanoframes exhibit much improved catalytic performance, such as high stability under prolonged electrochemical potential cycles, promoting direct electro-oxidation of formic acid to carbon dioxide and enhancing oxygen reduction reaction activities. Because carbon monoxide can be generated from the carbon support through thermal annealing in air, a common process for pretreating supported catalysts, the developed approach can be easily adopted for preparing industrial scale catalysts that are made of Pt-Ni and other alloy nanoframes.


Inorganic Chemistry | 2011

Luminescence Properties and Quenching Mechanisms of Ln(Tf2N)3 Complexes in the Ionic Liquid bmpyr Tf2N

Amber Brandner; Taizo Kitahara; Nick Beare; Cuikun Lin; Mary T. Berry; P. Stanley May

The emission properties, including luminescence lifetimes, of the lanthanide complexes Ln(Tf(2)N)(3) (Tf(2)N = bis(trifluoromethanesulfonyl)amide); Ln(3+) = Eu(3+), Tm(3+), Dy(3+), Sm(3+), Pr(3+), Nd(3+), Er(3+)) in the ionic liquid bmpyr Tf(2)N (bmpyr = 1-n-butyl-1-methylpyrrolidinium) are presented. The luminescence quantum efficiencies, η, and radiative lifetimes, τ(R), are determined for Eu(3+)((5)D(0)), Tm(3+)((1)D(2)), Dy(3+)((4)F(9/2)), Sm(3+)((4)G(5/2)), and Pr(3+)((3)P(0)) emission. The luminescence lifetimes in these systems are remarkably long compared to values typically reported for Ln(3+) complexes in solution, reflecting weak vibrational quenching. The 1.5 μm emission corresponding to the Er(3+) ((4)I(13/2)→(4)I(15/2)) transition, for example, exhibits a lifetime of 77 μs. The multiphonon relaxation rate constants are determined for 10 different Ln(3+) emitting states, and the trend in multiphonon relaxation is analyzed in terms of the energy gap law. The energy gap law does describe the general trend in multiphonon relaxation, but deviations from the trend are much larger than those normally observed for crystal systems. The parameters determined from the energy gap law analysis are consistent with those reported for crystalline hosts. Because Ln(3+) emission is known to be particularly sensitive to quenching by water in bmpyr Tf(2)N, the binding properties of water to Eu(3+) in solutions of Eu(Tf(2)N)(3) in bmpyr Tf(2)N have been quantified. It is observed that water introduced into these systems binds quantitatively to Ln(3+). It is demonstrated that Eu(Tf(2)N)(3) can be used as a reasonable internal standard, both for monitoring the dryness of the solutions and for estimating the quantum efficiencies and radiative lifetimes for visible-emitting [Ln(Tf(2)N)(x)](3-x) complexes in bmpyr Tf(2)N.


Chemistry: A European Journal | 2014

Pt3Co Concave Nanocubes: Synthesis, Formation Understanding, and Enhanced Catalytic Activity toward Hydrogenation of Styrene

Chenyu Wang; Cuikun Lin; Lihua Zhang; Zewei Quan; Kai Sun; Bo Zhao; Feng Wang; Nathan Porter; Yuxuan Wang; Jiye Fang

We report a facile synthesis route to prepare high-quality Pt3Co nanocubes with a concave structure, and further demonstrate that these concave Pt3Co nanocubes are terminated with high-index crystal facets. The success of this preparation is highly dependent on an appropriate nucleation process with a successively anisotropic overgrowth and a preservation of the resultant high-index planes by control binding of oleyl-amine/oleic acid with a fine-tuned composition. Using a hydrogenation of styrene as a model reaction, these Pt3Co concave nanocubes as a new class of nanocatalysts with more open structure and active atomic sites located on their high-index crystallographic planes exhibit an enhanced catalytic activity in comparison with low-indexed surface terminated Pt3Co nanocubes in similar size.


Inorganic Chemistry | 2014

(BMI)3LnCl6 crystals as models for the coordination environment of LnCl3 (Ln = Sm, Eu, Dy, Er, Yb) in 1-butyl-3-methylimidazolium chloride ionic-liquid solution.

Yulun Han; Cuikun Lin; Qingguo Meng; Fengrong Dai; Andrew G. Sykes; Mary T. Berry; P. Stanley May

A series of (BMI)3LnCl6 (Ln = Sm, Eu, Dy, Er, Yb) crystals was prepared from solutions of LnCl3 dissolved in the ionic liquid, 1-butyl-3-methylimidazolium chloride (BMICl). Crystals with Ln = 5% Sm + 95% Gd and with Ln = 5% Dy + 95% Gd were also grown to assess the importance of cross-relaxation in the Sm and Dy samples. The crystals are isostructural, with monoclinic space group P21/c and four formula units per unit cell. The first coordination sphere of Ln(3+) consists of six Cl(-) anions forming a slightly distorted octahedral LnCl6(3-) center. The second coordination sphere is composed of nine BMI(+) cations. The emission spectra and luminescence lifetimes of both (BMI)3LnCl6 crystals and LnCl3 in BMICl solution were measured. The spectroscopic similarities suggest that crystalline (BMI)3LnCl6 provides a good model of the Ln(3+) coordination environment in BMICl solution.


Journal of Photonics for Energy | 2013

Design, fabrication, and characterization of a plasmonic upconversion enhancer and its prospects for photovoltaics

Hari P. Paudel; Dilip Dachhepati; Khadijeh Bayat; Seyyed Sadegh Mottaghian; P. Stanley May; Cuikun Lin; Steve Smith; Mahdi Farrokh Baroughi

Abstract. The design, fabrication, and characterization of an upconversion-luminescence enhancer based on a two-dimensional plasmonic crystal are described. Full-wave finite-difference time domain analysis was used for optimizing the geometrical parameters of the plasmonic crystal for maximum plasmon activity, as signified by minimum light reflection. The optimum design produced >20× enhancement in the average electromagnetic field intensity within a one-micron-thick dielectric film over the plasmonic crystal. The optimized plasmonic upconverter was fabricated and used to enhance the upconversion efficiency of sodium yttrium fluoride: 3% erbium, 17% ytterbium nanocrystals dispersed in a poly(methylmethcrylate) matrix. A thin film of the upconversion layer, 105 nm in thickness, was spin-coated on the surface of the plasmonic crystal, as well as on the surfaces of planar gold and bare glass, which were used as reference samples. Compared to the sample with a planar gold back reflector, the plasmonic crystal showed an enhancement of 3.3× for upconversion of 980-nm photons to 655-nm photons. The upconversion enhancement was 25.9× compared to the same coating on bare glass. An absorption model was developed to assess the viability of plasmonically enhanced upconversion for photovoltaic applications.

Collaboration


Dive into the Cuikun Lin's collaboration.

Top Co-Authors

Avatar

Jun Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mary T. Berry

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

P. Stanley May

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Xiaoming Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zewei Quan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiye Fang

Binghamton University

View shared research outputs
Top Co-Authors

Avatar

Min Yu

Northeast Normal University

View shared research outputs
Top Co-Authors

Avatar

Bo Zhao

University of South Dakota

View shared research outputs
Top Co-Authors

Avatar

Steve Smith

South Dakota School of Mines and Technology

View shared research outputs
Top Co-Authors

Avatar

Deyan Kong

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge