Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cuiqing Ma is active.

Publication


Featured researches published by Cuiqing Ma.


Bioresource Technology | 2011

Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8.

Zhengzhi Zhang; Zhaowei Hou; Chunyu Yang; Cuiqing Ma; Fei Tao; Ping Xu

A bacterial isolate, designated as DQ8, was found capable of degrading diesel, crude oil, n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in petroleum. Strain DQ8 was assigned to the genus Pseudomonas aeruginosa based on biochemical and genetic data. The metabolites identified from n-docosane as substrate suggested that P. aeruginosa DQ8 could oxidize n-alkanes via a terminal oxidation pathway. P. aeruginosa DQ8 could also degrade PAHs of three or four aromatic rings. The metabolites identified from fluorene as substrate suggested that P. aeruginosa DQ8 may degrade fluorene via two pathways. One is monooxygenation at C-9 of fluorene, and the other is initiated by dioxygenation at C-3 and C-4 of fluorene. P. aeruginosa DQ8 should be of great practical significance both in bioremediation of oil-contaminated soils and biotreatment of oil wastewater.


Applied and Environmental Microbiology | 2006

Deep Desulfurization of Diesel Oil and Crude Oils by a Newly Isolated Rhodococcus erythropolis Strain

Bo Yu; Ping Xu; Quan Shi; Cuiqing Ma

ABSTRACT The soil-isolated strain XP was identified as Rhodococcus erythropolis. R. erythropolis XP could efficiently desulfurize benzonaphthothiophene, a complicated model sulfur compound that exists in crude oil. The desulfurization product of benzonaphthothiophene was identified as α-hydroxy-β-phenyl-naphthalene. Resting cells could desulfurize diesel oil (total organic sulfur, 259 ppm) after hydrodesulfurization. The sulfur content of diesel oil was reduced by 94.5% by using the resting cell biocatalyst for 24 h at 30°C. Biodesulfurization of crude oils was also investigated. After 72 h of treatment at 30°C, 62.3% of the total sulfur content in Fushun crude oil (initial total sulfur content, 3,210 ppm) and 47.2% of that in Sudanese crude oil (initial total sulfur, 1,237 ppm) were removed. Gas chromatography with pulsed-flame photometric detector analysis was used to evaluate the effect of R. erythropolis XP treatment on the sulfur content in Fushun crude oil, and it was shown that most organic sulfur compounds were eliminated after biodesulfurization.


PLOS ONE | 2010

A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals.

Zijun Xiao; Chuanjuan Lv; Chao Gao; Jiayang Qin; Cuiqing Ma; Zhen Liu; Peihai Liu; Lixiang Li; Ping Xu

Background The high costs of pyridine nucleotide cofactors have limited the applications of NAD(P)-dependent oxidoreductases on an industrial scale. Although NAD(P)H regeneration systems have been widely studied, NAD(P)+ regeneration, which is required in reactions where the oxidized form of the cofactor is used, has been less well explored, particularly in whole-cell biocatalytic processes. Methodology/Principal Findings Simultaneous overexpression of an NAD+ dependent enzyme and an NAD+ regenerating enzyme (H2O producing NADH oxidase from Lactobacillus brevis) in a whole-cell biocatalyst was studied for application in the NAD+-dependent oxidation system. The whole-cell biocatalyst with (2R,3R)-2,3-butanediol dehydrogenase as the catalyzing enzyme was used to produce (3R)-acetoin, (3S)-acetoin and (2S,3S)-2,3-butanediol. Conclusions/Significance A recombinant strain, in which an NAD+ regeneration enzyme was coexpressed, displayed significantly higher biocatalytic efficiency in terms of the production of chiral acetoin and (2S,3S)-2,3-butanediol. The application of this coexpression system to the production of other chiral chemicals could be extended by using different NAD(P)-dependent dehydrogenases that require NAD(P)+ for catalysis.


PLOS ONE | 2009

Non-sterilized fermentative production of polymer-grade L-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2-6.

Jiayang Qin; Bo Zhao; Xiuwen Wang; Limin Wang; Bo Yu; Yanhe Ma; Cuiqing Ma; Hongzhi Tang; Jibin Sun; Ping Xu

Background The demand for lactic acid has been increasing considerably because of its use as a monomer for the synthesis of polylactic acid (PLA), which is a promising and environment-friendly alternative to plastics derived from petrochemicals. Optically pure l-lactic acid is essential for polymerization of PLA. The high fermentation cost of l-lactic acid is another limitation for PLA polymers to compete with conventional plastics. Methodology/Principal Findings A Bacillus sp. strain 2–6 for production of l-lactic acid was isolated at 55°C from soil samples. Its thermophilic characteristic made it a good lactic acid producer because optically pure l-lactic acid could be produced by this strain under open condition without sterilization. In 5-liter batch fermentation of Bacillus sp. 2–6, 118.0 g/liter of l-lactic acid with an optical purity of 99.4% was obtained from 121.3 g/liter of glucose. The yield was 97.3% and the average productivity was 4.37 g/liter/h. The maximum l-lactic acid concentration of 182.0 g/liter was obtained from 30-liter fed-batch fermentation with an average productivity of 3.03 g/liter/h and product optical purity of 99.4%. Conclusions/Significance With the newly isolated Bacillus sp. strain 2–6, high concentration of optically pure l-lactic acid could be produced efficiently in open fermentation without sterilization, which would lead to a new cost-effective method for polymer-grade l-lactic acid production from renewable resources.


Bioresource Technology | 2010

Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain

Limin Wang; Bo Zhao; Bo Liu; Bo Yu; Cuiqing Ma; Fei Su; Dongliang Hua; Qinggang Li; Yanhe Ma; Ping Xu

Lignocellulosic biomass-derived sugars are considered nowadays to be an economically attractive carbohydrate feedstock for large-scale fermentations of bulk chemicals such as lactic acid. In the present study, corncob molasses containing a high content of xylose, which is one of the lignocellulosic biomasses and a waste by-product from xylitol production, was used for L-lactic acid production via a newly isolated xylose utilizing Bacillus sp. strain XZL9. Bacillus sp. strain XZL9 can utilize the mixture of sugars including xylose, arabinose, and glucose in corncob molasses for L-lactic acid production. High concentration of L-lactic acid (74.7 g l⁻¹) was obtained from corncob molasses (initial total sugars of 91.4 g l⁻¹) in fed-batch fermentation. This study provides an encouraging means of producing L-lactic acid from lignocellulosic resource such as the low-cost corncob molasses.


Metabolic Engineering | 2014

Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol.

Youqiang Xu; Haipei Chu; Chao Gao; Fei Tao; Zikang Zhou; Kun Li; Lixiang Li; Cuiqing Ma; Ping Xu

The production of biofuels by recombinant Escherichia coli is restricted by the toxicity of the products. 2,3-Butanediol (2,3-BD), a platform and fuel bio-chemical with low toxicity to microbes, could be a promising alternative for biofuel production. However, the yield and productivity of 2,3-BD produced by recombinant E. coli strains are not sufficient for industrial scale fermentation. In this work, the production of 2,3-BD by recombinant E. coli strains was optimized by applying a systematic approach. 2,3-BD biosynthesis gene clusters were cloned from several native 2,3-BD producers, including Bacillus subtilis, Bacillus licheniformis, Klebsiella pneumoniae, Serratia marcescens, and Enterobacter cloacae, inserted into the expression vector pET28a, and compared for 2,3-BD synthesis. The recombinant strain E. coli BL21/pETPT7-EcABC, carrying the 2,3-BD pathway gene cluster from Enterobacter cloacae, showed the best ability to synthesize 2,3-BD. Thereafter, expression of the most efficient gene cluster was optimized by using different promoters, including PT7, Ptac, Pc, and Pabc. E. coli BL21/pET-RABC with Pabc as promoter was superior in 2,3-BD synthesis. On the basis of the results of biomass and extracellular metabolite profiling analyses, fermentation conditions, including pH, agitation speed, and aeration rate, were optimized for the efficient production of 2,3-BD. After fed-batch fermentation under the optimized conditions, 73.8g/L of 2,3-BD was produced by using E. coli BL21/pET-RABC within 62h. The values of both yield and productivity of 2,3-BD obtained with the optimized biological system are the highest ever achieved with an engineered E. coli strain. In addition to the 2,3-BD production, the systematic approach might also be used in the production of other important chemicals through recombinant E. coli strains.


Applied Microbiology and Biotechnology | 2007

Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production

Jinshan Li; Cuiqing Ma; Yanhe Ma; Yan Li; Wei Zhou; Ping Xu

An optimization strategy based on desirability function approach (DFA) together with response surface methodology (RSM) has been used to optimize production medium in L-glutamine fermentation. Fermentation problems often force to reach a compromise between different experimental variables in order to achieve the most suitable strategy applying in industrial production. The importance of the use of multi-objective optimization methods lies in the ability to cope with this kind of problems. A sequential RSM with different combinations of glucose and (NH4)2SO4 was performed to attain the optimal medium (OM-1) in glutamine production. Based on the result of RSM and the evaluation of production cost, a more economical optimal medium (OM-2) was obtained with the aid of DFA. In DFA study, glutamate, the main by-product in glutamine fermentation as another response was considered. Compared with OM-1 in validated experiment, similar amounts of glutamine were obtained in OM-2 while the concentration of glutamate and the production cost decreased by 53.6 and 7.1%, respectively.


Bioresource Technology | 2010

Characterization and biotechnological potential of petroleum-degrading bacteria isolated from oil-contaminated soils.

Zhengzhi Zhang; Lixue Gai; Zhaowei Hou; Chunyu Yang; Cuiqing Ma; Zhongguo Wang; Baiping Sun; Xiaofei He; Hongzhi Tang; Ping Xu

A collection of 38 bacteria was obtained by enrichment cultivation from oil-contaminated soils of an oil field in Daqing, China. Twenty-two strains could utilize diesel oil as the sole source of carbon and energy, and 11 strains could degrade the total petroleum hydrocarbons (TPHs) of diesel oil by more than 70% in 7d. Phylogenetically, 19 of the bacteria related to Bacillus species. About 87.5% TPHs of crude oil were degraded by a consortium of seven strains. Denaturing gradient gel electrophoresis analysis suggested that five of the strains persisted throughout the degradation process. The collection of isolated bacteria might be a useful resource for bioremediation of oil-contaminated soils and biotreatment of oil wastewater.


Applied and Environmental Microbiology | 2006

Modeling for Gellan Gum Production by Sphingomonas paucimobilis ATCC 31461 in a Simplified Medium

Xia Wang; Ping Xu; Yong Yuan; Changlong Liu; Dezhong Zhang; Zhengting Yang; Chunyu Yang; Cuiqing Ma

ABSTRACT Gellan gum production was carried out by Sphingomonas paucimobilis ATCC 31461 in a simplified medium with a short incubation time, and a kinetic model for understanding, controlling, and optimizing the fermentation process was proposed. The results revealed that glucose was the best carbon source and that the optimal concentration was 30 g liter−1. As for the fermenting parameters, considerably large amounts of gellan gum were yielded by an 8-h-old culture and a 4% inoculum at 200 rpm on a rotary shaker. Under the optimized conditions, the maximum level of gellan gum (14.75 g liter−1) and the highest conversion efficiency (49.17%) were obtained in a 30-liter fermentor in batch fermentation. Logistic and Luedeking-Piret models were confirmed to provide a good description of gellan gum fermentation, which gave some support for the study of gellan gum fermentation kinetics. Additionally, this study is the first demonstration that gellan gum production is largely growth associated by analysis of kinetics in its batch fermentation process. Based on model prediction, higher gellan gum production (17.71 g liter−1) and higher conversion efficiency (57.12%) were obtained in fed-batch fermentation at the same total glucose concentration (30 g liter−1).


Journal of Bioscience and Bioengineering | 2008

Biotechnological routes to pyruvate production

Ping Xu; Jianhua Qiu; Chao Gao; Cuiqing Ma

Pyruvate is an important metabolite in the central metabolism of living cells. It has been widely applied in food, pharmaceutical, and agrochemical industries. Pyruvate can be produced by both chemical and biological systems. Novel biotechnological systems that can yield pyruvate have been the focus of process development in pyruvate production. In this review, we summarize recent developments related to pyruvate production by biotechnological systems, with emphasis on the enzymatic synthesis of pyruvate from the cheaper substrate lactate.

Collaboration


Dive into the Cuiqing Ma's collaboration.

Top Co-Authors

Avatar

Ping Xu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Tao

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Hongzhi Tang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Bo Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Lixiang Li

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yu Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge