Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cuixia Di is active.

Publication


Featured researches published by Cuixia Di.


Critical Reviews in Microbiology | 2006

Role of Poly-Galacturonase Inhibiting Protein in Plant Defense

Cuixia Di; Manxiao Zhang; Shijian Xu; Tuo Cheng; Lizhe An

Polygalacturonase-inhibiting proteins (PGIPs) are plant proteins believed to play an important role in the defense against plant pathogen fungals. PGIPs are glycoproteins located in plant cell wall which reduce the hydrolytic activity of polygalacturonases (PGs), limit the growth of plant pathogens, and also elicit defense responses in plant. Furthermore, PGIPs belong to the super family of leucine reach repeat (LRR) proteins which also include the products of several plant resistance genes. Many of the studies show the PGIP properties, molecular characteristics, and PGIP gene expression induced by some elicitors. Some of the studies review individual PGIP gene expression in different signal transduction pathways. This article summarizes the properties, different signal transduction mechanisms, detecting methods, transgenic plants, and function of PGIP. It also presents PGIP gene expression in different stages of maturity, tissues, and varieties. The review especially reports the particular PGIP gene expression induced by different biotic and abiotic stresses, offers some questions, and prospects the future study, which are needed in order to develop efficient strategies for disease-resistant plants. They may be useful for genetic engineering to obtain transgenic plants with increased tolerance to fungal infection, which decrease the use of insecticide.


Mutation Research | 2013

Effects of 12C6+ ion radiation and ferulic acid on the zebrafish (Danio rerio) embryonic oxidative stress response and gene expression

Jing Si; Hong Zhang; Zhenhua Wang; Zhenhua Wu; Jiang Lu; Cuixia Di; Xin Zhou; Xiaowei Wang

The effects of carbon ion irradiation and ferulic acid (FA) on the induction of oxidative stress and alteration of gene expression were studied in zebrafish (Danio rerio) embryos. Zebrafish embryos at 8 hpf were divided into seven groups: the control group; the 1Gy, 3Gy and 7Gy irradiation groups; and three FA-pre-treated irradiation groups. In the irradiated groups, a significant increase in the teratogenesis of the zebrafish embryos and oxidative stress was accompanied by increased malondialdehyde (MDA) content, decreased glutathione (GSH) content and alterations in antioxidant enzyme activities (such as catalase [CAT] and superoxide dismutase [SOD]). Moreover, the mRNA levels for Cu/Zn-sod, Mn-sod, cat and gpx, the genes encoding these antioxidant proteins, were altered significantly. However, the mRNA expression patterns were not in accordance with those of the antioxidant enzymes and were more sensitive under low-dose irradiation. In addition, we detected the mRNA expression of ucp-2 and bcl-2, which are located at the mitochondrial inner membrane and related to reactive oxidative species (ROS) production. In the irradiated groups, the mRNA level of ucp-2 was significantly increased, whereas the mRNA level of bcl-2 was significantly decreased. Supplementation with FA, an antioxidant, was better able to reduce the irradiation-induced oxidative damage marked by changes in mortality, morphology, antioxidant enzyme activities and the MDA and GSH content, as well as in the mRNA expression levels. Overall, this study provided helpful information about the transcriptional effects of irradiation to better understand the mechanism of carbon ion-induced oxidative stress and FA-induced radioprotective effects.


Journal of Cellular Physiology | 2013

Carbon Ion Beams Induce Hepatoma Cell Death by NADPH Oxidase‐Mediated Mitochondrial Damage

Chao Sun; Zhenhua Wang; Yang Liu; Yuanyuan Liu; Hongyan Li; Cuixia Di; Zhenhua Wu; Lu Gan; Hong Zhang

Mitochondria are a major source of reactive oxygen species (ROS) and are also the target of cellular ROS. ROS damage to mitochondria leads to dysfunction that further enhances the production of mitochondrial ROS. This feed‐forward vicious cycle between mitochondria and ROS induces cell death. Within a few minutes of radiation exposure, NADPH oxidase is activated to elevate the ROS level. Activated NADPH oxidase might induce the feed‐forward cycle of mitochondria and this is a possible mechanism for cancer cell death induced by heavy ion irradiation. We found that after 4 Gy of 12C6+ ion radiation of HepG2 cells, the NADPH oxidase membrane subunit gp91phox was not involved in enzyme activation through increased expression; however, the subunit p47phox was involved in activation by being translocated to the membrane. 12C6+ ion radiation clearly decreased the ΔΨm of HepG2 cells, increasing mitochondrial DNA damage and inducing cell death. Pretreatment with apocynin (APO, an NADPH oxidase inhibitor) effectively prevented the ΔΨm decrease, mitochondrial DNA damage, and cell death induced by radiation. However, these protective effects were not observed with APO treatment after irradiation exposure. These data demonstrated that NADPH oxidase activation was an initiator in mitochondrial damage. Once mitochondria entered the feed‐forward cycle, cell fate was no longer controlled by NADPH oxidase. Only antioxidants that targeted mitochondria such as MitoQ could break the cycle and release cells from death. J. Cell. Physiol. 229: 100–107, 2014.


International Journal of Oncology | 2016

Downregulation of Nrf2 promotes radiation-induced apoptosis through Nrf2 mediated Notch signaling in non-small cell lung cancer cells

Qiuyue Zhao; Aihong Mao; Jiawei Yan; Chao Sun; Cuixia Di; Xin Zhou; Hongyan Li; Ruoshui Guo; Hong Zhang

The nuclear factor erythroid-2-related factor 2 (Nrf2) is a crucial regulator of the cellular antioxidant system. Nrf2 is often constitutively activated in non-small cell lung cancer (NSCLC) cell lines, which promotes cytoprotection against oxidative stress and xenobiotics. Notch1 signaling is critically implicated in cell fate determination. It has been reported that Nf2 strongly regulates Notch1 activity. However, the role of Nrf2 mediated Notch1 signaling in response to ionizing radiation (IR) remains elusive. We report that knockdown of Nrf2 promotes radiation-induced apoptosis through Nrf2 mediated Notch1 signaling in NSCLC cells. IR activated Nrf2 in a dose-dependent manner and the expression of Nrf2 was significantly elevated at 4 h after exposure. RNAi-mediated reduction of Nrf2 significantly increased endogenous ROS levels, and decreased the expression of glutamate cysteine ligase catalytic subunit (GCLC), heme oxygenase-1 (HO-1) and NAD (P) H quinine oxidoreductase-1 (NQO1) in irradiated cells. Furthermore, decrease in Nrf2 expression significantly dampened Notch1 expression following ionizing radiation exposure, and potentiated IR-induced cellular apoptosis. These results demonstrated that Nrf2 could be activated by ionizing radiation, knockdown of Nrf2 could promote radiation induced apoptosis and Nrf2-mediated Notch signaling is an important determinant in radioresistance of lung cancer cells.


Journal of Cellular Physiology | 2015

DNA-PKcs Deficiency Inhibits Glioblastoma Cell-Derived Angiogenesis After Ionizing Radiation

Yang Liu; L. Zhang; Yuanyuan Liu; Chao Sun; Hong Zhang; Guoying Miao; Cuixia Di; Xin Zhou; Rong Zhou; Zhenhua Wang

DNA‐dependent protein kinase catalytic subunit (DNA‐PKcs) plays a critical role in non‐homologous end‐joining repair of DNA double‐strand breaks (DSB) induced by ionizing radiation (IR). Little is known, however, regarding the relationship between DNA‐PKcs and IR‐induced angiogenesis; thus, in this study we aimed to further elucidate this relationship. Our findings revealed that lack of DNA‐PKcs expression or activity sensitized glioma cells to radiation due to the defective DNA DSB repairs and inhibition of phosphorylated AktSer473. Moreover, DNA‐PKcs deficiency apparently mitigated IR‐induced migration, invasion and tube formation of human microvascular endothelial cell (HMEC‐1) in conditioned media derived from irradiated DNA‐PKcs mutant M059J glioma cells or M059K glioma cells that have inhibited DNA‐PKcs kinase activity due to the specific inhibitor NU7026 or siRNA knockdown. Moreover, IR‐elevated vascular endothelial growth factor (VEGF) secretion was abrogated by DNA‐PKcs suppression. Supplemental VEGF antibody to irradiated‐conditioned media was negated enhanced cell motility with a concomitant decrease in phosphorylation of the FAKTry925 and SrcTry416. Furthermore, DNA‐PKcs suppression was markedly abrogated in IR‐induced transcription factor hypoxia inducible factor‐1α (HIF‐1α) accumulation, which is related to activation of VEGF transcription. These findings, taken together, demonstrate that depletion of DNA‐PKcs in glioblastoma cells at least partly suppressed IR‐inflicted migration, invasion, and tube formation of HMEC‐1 cells, which may be associated with the reduced HIF‐1α level and VEGF secretion. Inhibition of DNA‐PKcs may be a promising therapeutic approach to enhance radio‐therapeutic efficacy for glioblastoma by hindering its angiogenesis. J. Cell. Physiol. 230: 1094–1103, 2015.


DNA and Cell Biology | 2014

microRNA Expression and Biogenesis in Cellular Response to Ionizing Radiation

Aihong Mao; Yang Liu; Hong Zhang; Cuixia Di; Chao Sun

Increasing evidence demonstrates that the expression levels of microRNAs (miRNAs) significantly change upon ionizing radiation (IR) and play a critical role in cellular response to IR. Although several radiation responsive miRNAs and their targets have been identified, little is known about how miRNAs expression and biogenesis is regulated by IR-caused DNA damage response (DDR). Hence, in this review, we summarize miRNA expression and biogenesis in cellular response to IR and mainly elucidate the regulatory mechanisms of miRNA expression and biogenesis from different aspects including ataxia-telangiectasia mutated (ATM) kinase, p53/p63/p73 family and other potential factors. Furthermore, we focus on ΔNp73, which might be a potential regulator of miRNA expression and biogenesis in cellular response to IR. miRNAs could effectively activate the IR-induced DDR and modulate the radiation response and cellular radiosensitivity, which have an important potential clinical application. Therefore, thoroughly understanding the regulatory mechanisms of miRNAs expression and biogenesis in radiation response will provide new insights for clinical cancer radiotherapy.


Cell Cycle | 2013

Mechanisms, function and clinical applications of DNp73

Cuixia Di; Lina Yang; Hong Zhang; Xiaofei Ma; Xin Zhang; Chao Sun; Hongyan Li; Shuai Xu; Lizhe An; Xun Li; Zhongtian Bai

p73, has two distinct promoters, which allow the formation of two protein isoforms: full-length transactivating (TA) p73 and an N-terminally truncated p73 species (referred to as DNp73) that lacks the N-terminal transactivating domain. Although the exact cellular function of DNp73 is unclear, the high expression levels of the genes have been observed in a variety of human cancers and cancer cell lines and have been connected to pro-tumor activities. Hence the aim of this review is to summarize DNp73 expression status in cancer in the current literature. Furthermore, we also focused on recent findings of DNp73 related to the biological functions from apoptosis, chemosensitivity, radiosensitibity, differentiation, development, etc. Thus this review highlights the significance of DNp73 as a marker for disease severity in patients and as target for cancer therapy.


Biomedical and Environmental Sciences | 2013

Simulated Microgravity Conditions and Carbon Ion Irradiation Induce Spermatogenic Cell Apoptosis and Sperm DNA Damage

Hongyan Li; Hong Zhang; Guo Ying Miao; Yi Xie; Chao Sun; Cuixia Di; Yang Liu; Yuanyuan Liu; Xin Zhang; Xiaofei Ma; Shuai Xu; Lu Gan; Xin Zhou

OBJECTIVE To investigate the effect of simulated microgravity and carbon ion irradiation (CIR) on spermatogenic cell apoptosis and sperm DNA damage to the testis of male Swiss Webster mice, and assess the risk associated with space environment. METHODS Sperm DNA damage indicated by DNA fragmentation index (DFI) and high DNA stainability (HDS) was measured by sperm chromatin structure assay (SCSA). Apoptosis of spermatogenic cells was detected by annexin V-propidium iodide assay. Bax (the expression levels of p53) and proliferating cell nuclear antigen (PCNA) were measured by immunoblotting; p53 and PCNA were located by immunohistology. RESULTS HDS, DFI, apoptosis index, and the expression levels of p53 and Bax were detected to be significantly higher in the experimental groups (P<0.05) compared with those in the control group; however, the PCNA expression varied to a certain degree. p53- and PCNA- positive expression were detected in each group, mainly in relation to the spermatogonic cells and spermatocytes. CONCLUSION The findings of the present study demonstrated that simulated microgravity and CIR can induce spermatogenic cell apoptosis and sperm DNA damage. Sperm DNA damage may be one of the underlying mechanisms behind male fertility decline under space environment. These findings may provide a scientific basis for protecting astronauts and space travelers health and safety.


Planta | 2009

Molecular cloning, functional analysis and localization of a novel gene encoding polygalacturonase-inhibiting protein in Chorispora bungeana

Cuixia Di; Ming Li; Feng Long; Muqun Bai; Yajie Liu; Xiaolin Zheng; Shijian Xu; Yun Xiang; Zhenglong Sun; Lizhe An

Polygalacturonase-inhibiting proteins (PGIPs) are plant defense proteins. To date, no spatial distribution of PGIPs and interaction between PGIPs and nitric oxide (NO) in plant were described. Here, we first reported the full-length cDNA sequence of PGIP of Chorispora bungeana (CbPGIP1). Notably, immunofluorescence localization showed that the CbPGIP was evenly distributed in leaves but it was mainly localized in epidermis and vascular bundle in stems and roots. Further studies indicated that CbPGIP had higher abundance in roots than in stems and leaves. Conversely, the bulk PGIP of C. bungeana showed a higher activity in leaves than in stems and roots. In addition, quantitative real-time polymerase chain reaction demonstrated that CbPGIP1 expression was induced by Stemphylium solani, salicylic acid (SA), 4, −4°C and NO. This is a first report attempting to predict if NO can induce the PGIP expression. Taken together, these findings showed that the gene was spatially regulated and NO and SA might take part in CbPGIP1 expression induced by biotic and abiotic stresses. This study highlighted the potential importance of CbPGIP1 and NO in plant resistance.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2013

Proteomic analysis for testis of mice exposed to carbon ion radiation.

Hongyan Li; Hong Zhang; Yi Xie; Yuxuan He; Guoying Miao; Lina Yang; Cuixia Di; Yang He

This paper investigates the mechanism of action of heavy ion radiation (HIR) on mouse testes. The testes of male mice subjected to whole body irradiation with carbon ion beam (0.5 and 4Gy) were analyzed at 7days after irradiation. A two-dimensional gel electrophoresis approach was employed to investigate the alteration of protein expression in the testes. Spot detection and matching were performed using the PDQuest 8.0 software. A difference of more than threefold in protein quantity (normalized spot volume) is the standard for detecting differentially expressed protein spots. A total of 11 differentially expressed proteins were found. Protein identification was performed using matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF). Nine specific proteins were identified by searching the protein sequence database of the National Center for Biotechnology Information. These proteins were found involved in molecular chaperones, metabolic enzymes, oxidative stress, sperm function, and spermatogenic cell proliferation. HIR decreased glutathione activity and increased malondialdehyde content in the testes. Given that Pin1 is related to the cell cycle and that proliferation is affected by spermatogenesis, we analyzed testicular histological changes and Pin1 protein expression through immunoblotting and immunofluorescence. Alterations of multiple pathways may be associated with HIR toxicity to the testes. Our findings are essential for studies on the development, biology, and pathology of mouse testes after HIR in space or radiotherapy.

Collaboration


Dive into the Cuixia Di's collaboration.

Top Co-Authors

Avatar

Hong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yang Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chao Sun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Si

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongyan Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xin Zhou

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lu Gan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Aihong Mao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiuyue Zhao

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge