Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cun-Hui Zhang is active.

Publication


Featured researches published by Cun-Hui Zhang.


Annals of Statistics | 2010

Nearly unbiased variable selection under minimax concave penalty

Cun-Hui Zhang

We propose MC+, a fast, continuous, nearly unbiased and accurate method of penalized variable selection in high-dimensional linear regression. The LASSO is fast and continuous, but biased. The bias of the LASSO may prevent consistent variable selection. Subset selection is unbiased but computationally costly. The MC+ has two elements: a minimax concave penalty (MCP) and a penalized linear unbiased selection (PLUS) algorithm. The MCP provides the convexity of the penalized loss in sparse regions to the greatest extent given certain thresholds for variable selection and unbiasedness. The PLUS computes multiple exact local minimizers of a possibly nonconvex penalized loss function in a certain main branch of the graph of critical points of the penalized loss. Its output is a continuous piecewise linear path encompassing from the origin for infinite penalty to a least squares solution for zero penalty. We prove that at a universal penalty level, the MC+ has high probability of matching the signs of the unknowns, and thus correct selection, without assuming the strong irrepresentable condition required by the LASSO. This selection consistency applies to the case of p » n, and is proved to hold for exactly the MC+ solution among possibly many local minimizers. We prove that the MC+ attains certain minimax convergence rates in probability for the estimation of regression coefficients in l r balls. We use the SURE method to derive degrees of freedom and C p -type risk estimates for general penalized LSE, including the LASSO and MC+ estimators, and prove their unbiasedness. Based on the estimated degrees of freedom, we propose an estimator of the noise level for proper choice of the penalty level. For full rank designs and general sub-quadratic penalties, we provide necessary and sufficient conditions for the continuity of the penalized LSE. Simulation results overwhelmingly support our claim of superior variable selection properties and demonstrate the computational efficiency of the proposed method.


Journal of Statistical Planning and Inference | 2013

Correlated variables in regression: Clustering and sparse estimation

Peter Bühlmann; Philipp Rütimann; Sara van de Geer; Cun-Hui Zhang

We consider estimation in a high-dimensional linear model with strongly correlated variables. We propose to cluster the variables first and do subsequent sparse estimation such as the Lasso for cluster-representatives or the group Lasso based on the structure from the clusters. Regarding the first step, we present a novel and bottom-up agglomerative clustering algorithm based on canonical correlations, and we show that it finds an optimal solution and is statistically consistent. We also present some theoretical arguments that canonical correlation based clustering leads to a better-posed compatibility constant for the design matrix which ensures identifiability and an oracle inequality for the group Lasso. Furthermore, we discuss circumstances where cluster-representatives and using the Lasso as subsequent estimator leads to improved results for prediction and detection of variables. We complement the theoretical analysis with various empirical results.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2004

Mixed group ranks: preference and confidence in classifier combination

Ofer Melnik; Yehuda Vardi; Cun-Hui Zhang

Classifier combination holds the potential of improving performance by combining the results of multiple classifiers. For domains with very large numbers of classes, such as biometrics, we present an axiomatic framework of desirable mathematical properties for combination functions of rank-based classifiers. This framework represents a continuum of combination rules, including the Borda Count, Logistic Regression, and Highest Rank combination methods as extreme cases. Intuitively, this framework captures how the two complementary concepts of general preference for specific classifiers and the confidence it has in any specific result (as indicated by ranks) can be balanced while maintaining consistent rank interpretation. Mixed Group Ranks (MGR) is a new combination function that balances preference and confidence by generalizing these other functions. We demonstrate that MGR is an effective combination approach by performing multiple experiments on data sets with large numbers of classes and classifiers from the FERET face recognition study.


Annals of Statistics | 2009

General maximum likelihood empirical Bayes estimation of normal means

Wenhua Jiang; Cun-Hui Zhang

We propose a general maximum likelihood empirical Bayes (GMLEB) method for the estimation of a mean vector based on observations with i.i.d. normal errors. We prove that under mild moment conditions on the unknown means, the average mean squared error (MSE) of the GMLEB is within an infinitesimal fraction of the minimum average MSE among all separable estimators which use a single deterministic estimating function on individual observations, provided that the risk is of greater order than (log n) 5 /n. We also prove that the GMLEB is uniformly approximately minimax in regular and weak l p balls when the order of the length-normalized norm of the unknown means is between (log n) k1 /n 1/(p^2) and n/(log n) k2 . Simulation experiments demonstrate that the GMLEB outperforms the James―Stein and several state-of-the-art threshold estimators in a wide range of settings without much down side.


Mathematical Programming | 2001

A modified Weiszfeld algorithm for the Fermat-Weber location problem

Yehuda Vardi; Cun-Hui Zhang

Abstract.This paper gives a new, simple, monotonically convergent, algorithm for the Fermat-Weber location problem, with extensions covering more general cost functions.


Annals of Statistics | 2011

THE SPARSE LAPLACIAN SHRINKAGE ESTIMATOR FOR HIGH-DIMENSIONAL REGRESSION

Jian Huang; Shuangge Ma; Hongzhe Li; Cun-Hui Zhang

We propose a new penalized method for variable selection and estimation that explicitly incorporates the correlation patterns among predictors. This method is based on a combination of the minimax concave penalty and Laplacian quadratic associated with a graph as the penalty function. We call it the sparse Laplacian shrinkage (SLS) method. The SLS uses the minimax concave penalty for encouraging sparsity and Laplacian quadratic penalty for promoting smoothness among coefficients associated with the correlated predictors. The SLS has a generalized grouping property with respect to the graph represented by the Laplacian quadratic. We show that the SLS possesses an oracle property in the sense that it is selection consistent and equal to the oracle Laplacian shrinkage estimator with high probability. This result holds in sparse, high-dimensional settings with p ≫ n under reasonable conditions. We derive a coordinate descent algorithm for computing the SLS estimates. Simulation studies are conducted to evaluate the performance of the SLS method and a real data example is used to illustrate its application.


Foundations of Computational Mathematics | 2016

On Tensor Completion via Nuclear Norm Minimization

Ming Yuan; Cun-Hui Zhang

Many problems can be formulated as recovering a low-rank tensor. Although an increasingly common task, tensor recovery remains a challenging problem because of the delicacy associated with the decomposition of higher-order tensors. To overcome these difficulties, existing approaches often proceed by unfolding tensors into matrices and then apply techniques for matrix completion. We show here that such matricization fails to exploit the tensor structure and may lead to suboptimal procedure. More specifically, we investigate a convex optimization approach to tensor completion by directly minimizing a tensor nuclear norm and prove that this leads to an improved sample size requirement. To establish our results, we develop a series of algebraic and probabilistic techniques such as characterization of subdifferential for tensor nuclear norm and concentration inequalities for tensor martingales, which may be of independent interests and could be useful in other tensor-related problems.


Annals of Statistics | 2005

General empirical Bayes wavelet methods and exactly adaptive minimax estimation

Cun-Hui Zhang

In many statistical problems, stochastic signals can be represented as a sequence of noisy wavelet coefficients. In this paper, we develop general empirical Bayes methods for the estimation of true signal. Our estimators approximate certain oracle separable rules and achieve adaptation to ideal risks and exact minimax risks in broad collections of classes of signals. In particular, our estimators are uniformly adaptive to the minimum risk of separable estimators and the exact minimax risks simultaneously in Besov balls of all smoothness and shape indices, and they are uniformly superefficient in convergence rates in all compact sets in Besov spaces with a finite secondary shape parameter. Furthermore, in classes nested between Besov balls of the same smoothness index, our estimators dominate threshold and James-Stein estimators within an infinitesimal fraction of the minimax risks. More general block empirical Bayes estimators are developed. Both white noise with drift and nonparametric regression are considered.


Annals of Statistics | 2004

Equivalence theory for density estimation, Poisson processes and Gaussian white noise with drift

Lawrence D. Brown; Andrew V. Carter; Mark G. Low; Cun-Hui Zhang

This paper establishes the global asymptotic equivalence between a Poisson process with variable intensity and white noise with drift under sharp smoothness conditions on the unknown function. This equivalence is also extended to density estimation models by Poissonization. The asymptotic equivalences are established by constructing explicit equivalence mappings. The impact of such asymptotic equivalence results is that an investigation in one of these nonparametric models automatically yields asymptotically analogous results in the other models.


Annals of Statistics | 2013

ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.

Jian Huang; Tingni Sun; Zhiliang Ying; Yi Yu; Cun-Hui Zhang

We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.

Collaboration


Dive into the Cun-Hui Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tingni Sun

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence D. Brown

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge