Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cunduo Tang is active.

Publication


Featured researches published by Cunduo Tang.


Journal of Bioscience and Bioengineering | 2011

Cloning and optimized expression of a neutral endoglucanase gene (ncel5A) from Volvariella volvacea WX32 in Pichia pastoris

Jianfang Li; Cunduo Tang; Hongling Shi; Minchen Wu

A cDNA fragment encoding a mature neutral endoglucanase with 366 amino acids was cloned from Volvariella volvacea WX32. Online analysis of amino acid sequence homology showed that the endoglucanase, designated as NCel5A, belongs to glycoside hydrolase family 5. The recombinant plasmid, pPIC9K-ncel5A, was transformed into Pichia pastoris GS115 by electroporation. Screening of multiple copies of the gene ncel5A in transformants was performed on YPD plates containing geneticin G418. One transformant expressing the highest recombinant NCel5A (rNCel5A) activity, numbered as GSNCel4-3, was chosen for optimizing expression conditions. In optimized conditions, the expressed rNCel5A activity was up to 4612 U/ml. SDS-PAGE and enzyme activity assays demonstrated that the rNCel5A, a glycosylated protein with an M.W. of about 42 kDa, was extracellularly expressed in P. pastoris. The rNCel5A showed the highest activity at pH 7.5 and 55°C and was stable at a broad pH range of 6.0-9.0 and at a temperature of 55°C or below.


Journal of Agricultural and Food Chemistry | 2012

Cloning and Functional Expression of an Acidophilic β-Mannanase Gene (Anman5A) from Aspergillus niger LW-1 in Pichia pastoris

Jianfang Li; Shunge Zhao; Cunduo Tang; Junqing Wang; Minchen Wu

A cDNA fragment of the Anman5A, a gene that encodes an acidophilic β-mannanase of Aspergillus niger LW-1 (abbreviated as AnMan5A), was cloned and functionally expressed in Pichia pastoris . Homology alignment of amino acid sequences verified that the AnMan5A belongs to the glycoside hydrolase (GH) family 5. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assay demonstrated that the recombinant AnMan5A (reAnMan5A), a N-glycosylated protein with an apparent molecular weight of 52.0 kDa, was secreted into the medium. The highest reAnMan5A activity expressed by one P. pastoris transformant, labeled as GSAnMan4-12, reached 29.0 units/mL. The purified reAnMan5A displayed the highest activity at pH 3.5 and 70 °C. It was stable at a pH range of 3.0-7.0 and at a temperature of 60 °C or below. Its activity was not significantly affected by an array of metal ions and ethylenediaminetetraacetic acid (EDTA). The K(m) and V(max) of the reAnMan5A, toward locust bean gum, were 1.10 mg/mL and 266.7 units/mg, respectively.


PLOS ONE | 2013

Fusing a carbohydrate-binding module into the Aspergillus usamii β-mannanase to improve its thermostability and cellulose-binding capacity by in silico design.

Cunduo Tang; Jianfang Li; Xihuan Wei; Rou Min; Shu-Juan Gao; Junqing Wang; Xin Yin; Minchen Wu

The AuMan5A, an acidophilic glycoside hydrolase (GH) family 5 β-mannanase derived from Aspergillus usamii YL-01-78, consists of an only catalytic domain (CD). To perfect enzymatic properties of the AuMan5A, a family 1 carbohydrate-binding module (CBM) of the Trichoderma reesei cellobiohydrolase I (TrCBH I), having the lowest binding free energy with cellobiose, was selected by in silico design, and fused into its C-terminus forming a fusion β-mannanase, designated as AuMan5A-CBM. Then, its encoding gene, Auman5A-cbm, was constructed as it was designed theoretically, and expressed in Pichia pastoris GS115. SDS-PAGE analysis displayed that both recombinant AuMan5A-CBM (reAuMan5A-CBM) and AuMan5A (reAuMan5A) were secreted into the cultured media with apparent molecular masses of 57.3 and 49.8 kDa, respectively. The temperature optimum of the reAuMan5A-CBM was 75°C, being 5°C higher than that of the reAuMan5A. They were stable at temperatures of 68 and 60°C, respectively. Compared with reAuMan5A, the reAuMan5A-CBM showed an obvious decrease in K m and a slight alteration in V max. In addition, the fusion of a CBM of the TrCBH I into the AuMan5A contributed to its cellulose-binding capacity.


Journal of the Science of Food and Agriculture | 2013

Enhanced thermostability of a mesophilic xylanase by N-terminal replacement designed by molecular dynamics simulation.

Xin Yin; Jianfang Li; Junqing Wang; Cunduo Tang; Minchen Wu

BACKGROUND Xylanases have attracted much attention owing to their potential applications. The applicability of xylanases, however, was bottlenecked by their low stabilities at high temperature or extreme pH. The purpose of this work was to enhance the thermostability of a mesophilic xylanase by N-terminal replacement. RESULTS The thermostability of AoXyn11, a mesophilic family 11 xylanase from Aspergillus oryzae, was enhanced by replacing its N-terminal segment with the corresponding one of EvXyn11(TS) , a hyperthermotolerant family 11 xylanase. A hybrid xylanase with high thermostability, NhXyn11⁵⁷, was predicted by molecular dynamics (MD) simulation. An NhXyn11⁵⁷-encoding gene, Nhxyn11⁵⁷, was then constructed as designed theoretically, and overexpressed in Pichia pastoris. The temperature optimum of recombinant NhXyn11⁵⁷ (re-NhXyn11⁵⁷) was 75 °C, much higher than that of re-AoXyn11. Both xylanases were thermostable at 65 and 40 °C, respectively. Additionally, the pH optimum and stability of re-NhXyn11⁵⁷ were 5.5 and at a range of 4.0-8.5. Its activity was not significantly affected by metal ions tested and EDTA, but strongly inhibited by Mn²⁺ and Ag⁺. CONCLUSION This work obviously enhanced the thermostability of a mesophilic xylanase, making re-NhXyn11⁵⁷ a promising candidate for industrial processes. It also provided an effective technical strategy for improving thermostabilities of other mesophilic enzymes.


Carbohydrate Research | 2011

Bimutation breeding of Aspergillus niger strain for enhancing β-mannanase production by solid-state fermentation

Minchen Wu; Cunduo Tang; Jianfang Li; Huimin Zhang; Jing Guo

A parent strain Aspergillus niger LW-1 was mutated by the compound mutagenesis of vacuum microwave (VMW) and ethyl methane sulfonate (EMS). A mutant strain, designated as A. niger E-30, with high- and stable-yield β-mannanase was obtained through a series of screening. The β-mannanase activity of the mutant strain E-30, cultivated on the basic fermentation medium at 32°C for 96 h, reached 36,675 U/g dried koji, being 1.98-fold higher than that (18,50 1U/g dried koji) of the parent strain LW-1. The purified E-30 β-mannanase, a glycoprotein with a carbohydrate content of 19.6%, had an apparent molecular weight of about 42.0 kDa by SDS-PAGE. Its optimal pH and temperature were 3.5 and 65°C, respectively. It was highly stable at a pH range of 3.5-7.0 and at a temperature of 60°C and below. The kinetic parameters K(m) and V(max), toward locust bean gum and at pH 4.8 and 50°C, were 3.68 mg/mL and 1067.5 U/mg, respectively. The β-mannanase activity was not significantly affected by an array of metal ions and EDTA, but strongly inhibited by Ag(+) and Hg(2+). In addition, the hydrolytic conditions of konjak glucomannan using the purified E-30 β-mannanase were optimized as follows: konjak gum solution 240 g/L (dissolved in deionized water), hydrolytic temperature 50°C, β-mannanase dosage 120 U/g konjak gum, and hydrolytic time 8 h.


Protein and Peptide Letters | 2014

Exploration of Disulfide Bridge and N-Glycosylation Contributing to High Thermostability of a Hybrid Xylanase

Zhongbiao Tan; Cunduo Tang; Minchen Wu; Yao He; Die Hu; Junqing Wang

A comparison between three-dimensional structures of a wild-type xylanase AoXyn11A and a hybrid xylanase AEx11A revealed that a disulfide bridge (Cys(5)-Cys(32)) and an N-glycosylation site (Asn(42)) were imported into AEx11A by N-terminal substitution of AoXyn11A with EvXyn11(TS). Two mutant genes AEx11A(C5T) and AEx11A(N42Q) were constructed by mutating Cys(5)- and Asn(42)-encoding codons of AEx11A into Thr(5)- and Gln(42)-encoding ones, and heterologously expressed in Pichia pastoris GS115, respectively. The temperature optimum of the recombinant AEx11A(C5T) (reAEx11A(C5T)) was decreased to 60°C from 80°C of reAEx11A, while its thermal inactivation half-lives at 70 and 80°C shortened to 3 and 1 min from 197 and 25 min of reAEx11A, respectively. However, there was no obvious alteration between reAEx11A and reAEx11A(C5T) in pH characteristics and kinetic parameters. Furthermore, both reAEx11A(N42Q) and reAEx11A displayed no significant difference in all enzymatic properties tested, except for the apparent molecular weight. We concluded based on this study that the disulfide bridge of AEx11A was vital to its high thermostability, but the N-glycosylation had no effect on.


Journal of Agricultural and Food Chemistry | 2017

Stereoselective Hydrolysis of Epoxides by reVrEH3, a Novel Vigna radiata Epoxide Hydrolase with High Enantioselectivity or High and Complementary Regioselectivity

Die Hu; Cunduo Tang; Chuang Li; Tingting Kan; Xiao-Ling Shi; Lei Feng; Minchen Wu

To provide more options for the stereoselective hydrolysis of epoxides, an epoxide hydrolase (VrEH3) gene from Vigna radiata was cloned and expressed in Escherichia coli. Recombinant VrEH3 displayed the maximum activity at pH 7.0 and 45 °C and high stability at pH 4.5-7.5 and 55 °C. Notably, reVrEH3 exhibited high and complementary regioselectivity toward styrene oxides 1a-3a and high enantioselectivity (E = 48.7) toward o-cresyl glycidyl ether 9a. To elucidate these interesting phenomena, the interactions of the three-dimensional structure between VrEH3 and enantiomers of 1a and 9a were analyzed by molecular docking simulation. Using E. coli/vreh3 whole cells, gram-scale preparations of (R)-1b and (R)-9a were performed by enantioconvergent hydrolysis of 100 mM rac-1a and kinetic resolution of 200 mM rac-9a in the buffer-free water system at 25 °C. These afforded (R)-1b with >99% eep and 78.7% overall yield after recrystallization and (R)-9a with >99% ees, 38.7% overall yield, and 12.7 g/L/h space-time yield.


Annals of Microbiology | 2013

Determination of amino acids and dipeptides is correlated significantly with optimum temperatures of microbial lipases

Huimin Zhang; Jianfang Li; Minchen Wu; Hongling Shi; Cunduo Tang

Amino acids and dipeptides that are correlated significantly with lipase optimum temperatures were searched for in 34 microbial lipase sequences by a stepwise regression method. The positive dipeptides were found to be IR, KS, NY, SA, ST and YR, whereas negative ones were DK, DY, IS, KA, WS, YS and QI. The calculated optimum temperatures from an optimal regression equation of dipeptides fitted the corresponding experimental optimum temperatures of lipases very well, and the maximal absolute difference was only 3.43°C. The spatial positions of the related dipeptides were searched for in two known crystal structures of a thermophilic and mesophilic lipase, respectively. Most of the positive dipeptides were sited in the α-helices, while the negative ones were located mainly in the β-strands or coils and about half of them existed in the N- or C-terminii of the lipases. The results obtained will be very useful in lipase engineering for enhancing lipase thermostability.


Applied Biochemistry and Microbiology | 2012

Cloning and bioinformatic analysis of an acidophilic β-mannanase gene, Anman5A, from Aspergillus niger LW-1

Shunge Zhao; Minchen Wu; Cunduo Tang; Shu-Juan Gao; Huimin Zhang; Jianfang Li

Using 3′ and 5′ rapid amplification of cDNA ends (RACE) techniques, the full-length cDNA sequence of the Anman5A, a gene that encodes an acidophilic β-mannanase of Aspergillus niger LW-1 (abbreviated to AnMan5A), was identified from the total RNA. The cDNA sequence was 1417 bp in length, harboring 5′- and 3′-untranslated regions, as well as an open reading frame (ORF) which encodes a 21-aa signal peptide, a 17-aa propeptide and a 345-aa mature peptide. Based on the topology of the phylogenetic tree of β-mannanases from glycoside hydrolase (GH) family 5, the AnMan5A belongs to the subfamily 7 of the GH family 5. Its 3-D structure was modeled by the bitemplate-based method using both MODELLER 9.9 and SALIGN programs, based on the known β-mannanase crystal structures of Trichoderma reesei (1QNO) and Lycopersicon esculentum (1RH9) from the GH family 5. In addition, the complete DNA sequence of the Anman5A was amplified from the genomic DNA using the pUCm-T vector-mediated PCR and conventional PCR methods. The DNA sequence was 1825 bp in length, containing a 5′-flanking regulatory region, 2 introns and 3 exons when compared with the full-length cDNA.


Biotechnology Letters | 2011

Cloning and sequence analysis of a novel xylanase gene, Auxyn10A , from Aspergillus usamii

Junqing Wang; Huimin Zhang; Minchen Wu; Cunduo Tang

Collaboration


Dive into the Cunduo Tang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Die Hu

Jiangnan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge