Cüneyt Uçarlı
Istanbul University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cüneyt Uçarlı.
Frontiers in Plant Science | 2016
Filiz Gürel; Zahide Neslihan Öztürk; Cüneyt Uçarlı; Daniele Rosellini
Barley is one of the oldest cultivated crops in the world with a high adaptive capacity. The natural tolerance of barley to stress has led to increasing interest in identification of stress responsive genes through small/large-scale omics studies, comparative genomics, and overexpression of some of these genes by genetic transformation. Two major categories of proteins involved in stress tolerance are transcription factors (TFs) responsible from the re-programming of the metabolism in stress environment, and genes encoding Late Embryogenesis Abundant (LEA) proteins, antioxidant enzymes, osmolytes, and transporters. Constitutive overexpression of several barley TFs, such as C-repeat binding factors (HvCBF4), dehydration-responsive element-binding factors (HvDREB1), and WRKYs (HvWRKY38), in transgenic plants resulted in higher tolerance to drought and salinity, possibly by effectively altering the expression levels of stress tolerance genes due to their higher DNA binding affinity. Na+/H+ antiporters, channel proteins, and lipid transporters can also be the strong candidates for engineering plants for tolerance to salinity and low temperatures.
Scientific Reports | 2016
Cüneyt Uçarlı; Liam J. McGuffin; Süleyman Çaputlu; Andres Aravena; Filiz Gürel
We analysed Hordeum spontaneum accessions from 21 different locations to understand the genetic diversity of HsDhn3 alleles and effects of single base mutations on the intrinsically disordered structure of the resulting polypeptide (HsDHN3). HsDHN3 was found to be YSK2-type with a low-frequency 6-aa deletion in the beginning of Exon 1. There is relatively high diversity in the intron region of HsDhn3 compared to the two exon regions. We have found subtle differences in K segments led to changes in amino acids chemical properties. Predictions for protein interaction profiles suggest the presence of a protein-binding site in HsDHN3 that coincides with the K1 segment. Comparison of DHN3 to closely related cereals showed that all of them contain a nuclear localization signal sequence flanking to the K1 segment and a novel conserved region located between the S and K1 segments [E(D/T)DGMGGR]. We found that H. vulgare, H. spontaneum, and Triticum urartu DHN3s have a greater number of phosphorylation sites for protein kinase C than other cereal species, which may be related to stress adaptation. Our results show that the nature and extent of mutations in the conserved segments of K1 and K2 are likely to be key factors in protection of cells.
Genetics and Molecular Research | 2015
Cüneyt Uçarlı; Feyza Tufan; Filiz Gürel
Mature embryos in tissue cultures are advantageous because of their abundance and rapid germination, which reduces genomic instability problems. In this study, 2-day-old isolated mature barley embryos were infected with 2 Agrobacterium hypervirulent strains (AGL1 and EHA105), followed by a 3-day period of co-cultivation in the presence of L-cystein amino acid. Chimeric expression of the b-glucuronidase gene (gusA) directed by a viral promoter of strawberry vein banding virus was observed in coleoptile epidermal cells and seminal roots in 5-day-old germinated seedlings. In addition to varying infectivity patterns in different strains, there was a higher ratio of transient b-glucuronidase expression in developing coleoptiles than in embryonic roots, indicating the high competency of shoot apical meristem cells in the mature embryo. A total of 548 explants were transformed and 156 plants developed to maturity on G418 media after 18-25 days. We detected transgenes in 74% of the screened plant leaves by polymerase chain reaction, and 49% of these expressed neomycin phosphotransferase II gene following AGL1 transformation. Ten randomly selected T0 transformants were analyzed using thermal asymmetric interlaced polymerase chain reaction and 24 fragments ranged between 200-600 base pairs were sequenced. Three of the sequences flanked with transferred-DNA showed high similarity to coding regions of the barley genome, including alpha tubulin5, homeobox 1, and mitochondrial 16S genes. We observed 70-200-base pair filler sequences only in the coding regions of barley in this study.
Bioinformation | 2015
Feyza Tufan; Cüneyt Uçarlı; Filiz Gürel
Fusarium culmorum is one of the most common and globally important causal agent of root and crown rot diseases of cereals. These diseases cause grain yield loss and reduced grain quality in barley. In this study, we have analyzed an expressed sequence tag (EST) database derived from F. culmorum infected barley root tissues available at the National Center for Biotechnology Information (NCBI). The 2294 sequences were assembled into 1619 non-redundant sequences consisting of 359 contigs and 1260 singletons using the program CAP3. BLASTX analysis for these sequences was conducted in order to find similar sequences in all databases. Gene Ontology search, enzyme search, KEGG mapping and InterProScan search were done using Blast2GO 3.0.7 tool. By BLASTX analysis, 41.7%, 7.7%, 3.2% and 47.4% of ESTs were categorized as annotated, unannotated, not mapping and without blast hits, respectively. BLASTX analysis revealed that the majority of top hits were barley proteins (43.5%). Based on Gene Ontology classification, 38.3%, 31.3%, and 16% of ESTs were assigned to molecular function, biological process, and cellular component GO terms, respectively. Most abundant GO terms were as follows: 157 sequences were related to response to stress (biological process), 207 sequences were related to ion binding (molecular function), and 160 sequences were related to plastid (cellular component). Furthermore, based on KEGG mapping, 369 sequences could be assigned to 264 enzymes and 83 different KEGG pathways. According to Enzyme Commission (EC) distribution; 94 sequences were transferases (EC2) while 70 sequences were hydrolases (EC3).
Archive | 2016
Filiz Gürel; Neslihan Z. Öztürk; Cüneyt Uçarlı
Drought and salinity are the main factors limiting plant growth and productivity. With the effects of global warming, severe drought episodes are expected to be widespread, which will certainly lead to decrease in crop production. Therefore, understanding plants’ response to drought and salinity stresses is more urgent than ever to reveal molecular mechanisms behind the natural tolerance which, then, can be used in the generation of stress-tolerant crop species. Barley stands out as the most salinity and drought-tolerant crop inPoaceae family with its wide range of wild genotypes. Due to its higher tolerance to abiotic and biotic stresses among other crops, it was studied to understand the mechanisms behind the natural tolerance via generation of various genetic resources and databases created by extensive sequence data, microarray studies, next-generation sequencing (NGS), and genetic maps. Large-scale transcriptomic analyses in barley showed that ROS-scavenging enzymes, transcription factors, LEA group proteins, and enzymes coding for osmoprotectants are the prominent groups of genes differentially expressed under salinity and drought stresses. Quantitative real-time PCR was efficiently used to measure transcript levels of stress-related genes under high salt or limited water conditions, allowing the prediction of functional characteristics of these genes according to their expression patterns. Small-scale expression studies also revealed the importance of cell and tissue type expression and mode of the stress treatment. However, although there are numerous candidate barley genes that can be used to develop transgenic crops with higher tolerance to salinity and drought, there are only limited isolation and cloning studies with these genes. We highly recommend more detailed studies on this naturally tolerant crop to be able to generate more drought or salt tolerance species via genetic transformation.
Plant Growth Regulation | 2016
Filiz Gürel; Neslihan Z. Öztürk; Emre Yörük; Cüneyt Uçarlı; Nazaret Poyraz
Applied Biochemistry and Biotechnology | 2015
Filiz Gürel; Cüneyt Uçarlı; Feyza Tufan; Deepak M. Kalaskar
European Journal of Plant Pathology | 2017
Feyza Tufan; Cüneyt Uçarlı; Berna Tunali; Filiz Gürel
Current Opinion in Biotechnology | 2011
Emre Yörük; Feyza Tufan; Cüneyt Uçarlı; Filiz Gürel
Turkish Journal of Field Crops | 2015
Muhammad Qasim Shahid; Cüneyt Uçarlı; Elif Karlik; Semian Karaer Uzuner; Filiz Gürel