Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cunren Liang is active.

Publication


Featured researches published by Cunren Liang.


Science | 2017

Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand

Ian Hamling; Sigrún Hreinsdóttir; Kate Clark; J. R. Elliott; Cunren Liang; Eric J. Fielding; Nicola Litchfield; Pilar Villamor; L. M. Wallace; Tim J. Wright; Elisabetta D’Anastasio; Stephen Bannister; David Burbidge; Paul Denys; Paula Gentle; Jamie Howarth; Christof Mueller; Neville Palmer; Chris Pearson; William Power; Philip M. Barnes; David J. A. Barrell; Russ Van Dissen; Robert Langridge; Timothy A. Little; Andrew Nicol; Jarg R. Pettinga; J. V. Rowland; Mark W. Stirling

An earthquake with a dozen faults The 2016 moment magnitude (Mw) 7.8 Kaikōura earthquake was one of the largest ever to hit New Zealand. Hamling et al. show with a new slip model that it was an incredibly complex event. Unlike most earthquakes, multiple faults ruptured to generate the ground shaking. A remarkable 12 faults ruptured overall, with the rupture jumping between faults located up to 15 km away from each other. The earthquake should motivate rethinking of certain seismic hazard models, which do not presently allow for this unusual complex rupture pattern. Science, this issue p. eaam7194 At least 12 faults spaced up to 15 kilometers apart ruptured during the magnitude 7.8 Kaikōura earthquake. INTRODUCTION On 14 November 2016 (local time), northeastern South Island of New Zealand was struck by a major moment magnitude (Mw) 7.8 earthquake. The Kaikōura earthquake was the most powerful experienced in the region in more than 150 years. The whole of New Zealand reported shaking, with widespread damage across much of northern South Island and in the capital city, Wellington. The earthquake straddled two distinct seismotectonic domains, breaking multiple faults in the contractional North Canterbury fault zone and the dominantly strike-slip Marlborough fault system. RATIONALE Earthquakes are conceptually thought to occur along a single fault. Although this is often the case, the need to account for multiple segment ruptures challenges seismic hazard assessments and potential maximum earthquake magnitudes. Field observations from many past earthquakes and numerical models suggest that a rupture will halt if it has to step over a distance as small as 5 km to continue on a different fault. The Kaikōura earthquake’s complexity defies many conventional assumptions about the degree to which earthquake ruptures are controlled by fault segmentation and provides additional motivation to rethink these issues in seismic hazard models. RESULTS Field observations, in conjunction with interferometric synthetic aperture radar (InSAR), Global Positioning System (GPS), and seismology data, reveal the Kaikōura earthquake to be one of the most complex earthquakes ever recorded with modern instrumental techniques. The rupture propagated northward for more than 170 km along both mapped and unmapped faults before continuing offshore at the island’s northeastern extent. A tsunami of up to 3 m in height was detected at Kaikōura and at three other tide gauges along the east coast of both the North and South Islands. Geodetic and geological field observations reveal surface ruptures along at least 12 major crustal faults and extensive uplift along much of the coastline. Surface displacements measured by GPS and satellite radar data show horizontal offsets of ~6 m. In addition, a fault-bounded block (the Papatea block) was uplifted by up to 8 m and translated south by 4 to 5 m. Modeling suggests that some of the faults slipped by more than 20 m, at depths of 10 to 15 km, with surface slip of ~10 m consistent with field observations of offset roads and fences. Although we can explain most of the deformation by crustal faulting alone, global moment tensors show a larger thrust component, indicating that the earthquake also involved some slip along the southern end of the Hikurangi subduction interface, which lies ~20 km beneath Kaikōura. Including this as a fault source in the inversion suggests that up to 4 m of predominantly reverse slip may have occurred on the subduction zone beneath the crustal faults, contributing ~10 to 30% of the total moment. CONCLUSION Although the unusual multifault rupture observed in the Kaikōura earthquake may be partly related to the geometrically complex nature of the faults in this region, this event emphasizes the importance of reevaluating how rupture scenarios are defined for seismic hazard models in plate boundary zones worldwide. Observed ground deformation from the 2016 Kaikōura, New Zealand, earthquake. (A and B) Photos showing the coastal uplift of 2 to 3 m associated with the Papatea block [labeled in (C)]. The inset in (A) shows an aerial view of New Zealand. Red lines denote the location of known active faults. The black box indicates the Marlborough fault system


Geophysical Research Letters | 2016

Slip segmentation and slow rupture to the trench during the 2015, Mw8.3 Illapel, Chile earthquake

Diego Melgar; Wenyuan Fan; Sebastian Riquelme; Jianghui Geng; Cunren Liang; Mauricio Fuentes; Gabriel Vargas; Richard M. Allen; Peter M. Shearer; Eric J. Fielding

The 2015 Mw8.3 Illapel, Chile earthquake is the latest megathrust event on the central segment of that subduction zone. It generated strong ground motions and a large (up to 11 m runup) tsunami which prompted the evacuation of more than 1 million people in the first hours following the event. Observations during recent earthquakes suggest that these phenomena can be associated with rupture on different parts of the megathrust. The deep portion generates strong shaking while slow, large slip on the shallow fault is responsible for the tsunami. It is unclear whether all megathrusts can have shallow slip during coseismic rupture and what physical properties regulate this. Here we show that the Illapel event ruptured both deep and shallow segments with substantial slip. We resolve a kinematic slip model using regional geophysical observations and analyze it jointly with teleseismic backprojection. We find that the shallow and deep portions of the megathrust are segmented and have fundamentally different behavior. We forward calculate local tsunami propagation from the resolved slip and find good agreement with field measurements, independently validating the slip model. These results show that the central portion of the Chilean subduction zone has accumulated a significant shallow slip deficit and indicates that, given enough time, shallow slip might be possible everywhere along the subduction zone.


Geophysical Research Letters | 2017

Coseismic deformation and triggered landslides of the 2016 Mw 6.2 Amatrice earthquake in Italy

Mong-Han Huang; Eric J. Fielding; Cunren Liang; Pietro Milillo; David Bekaert; Douglas S. Dreger; Jacqueline T. Salzer

The Central Apennines in Italy have had multiple moderate-size but damaging shallow earthquakes. In this study, we optimize the fault geometry and invert for fault slip based on coseismic GPS and interferometric synthetic aperture radar (InSAR) for the 2016 Mw 6.2 Amatrice earthquake in Italy. Our results show that nearly all the fault slip occurred between 3 and 6 km depth but extends 20 km along strike. There was less than 4 cm static surface displacement at the town Amatrice where the most devastating damage occurred. Landslides triggered by earthquake ground shaking are not uncommon, but triggered landslides with submeter movement are challenging to be observed in the field. We find evidence of coseismically triggered deep-seated landslides northwest and northeast of the epicenter where coseismic peak ground acceleration was estimated >0.5 g. By combining ascending and descending InSAR data, we are able to estimate the landslide thickness as at least 100 and 80 m near Monte Vettore and west of Castelluccio, respectively. The landslide near Monte Vettore terminates on the preexisting fault Monte Vettore Fault (MVEF) scarp. Our results imply that the long-term fault slip rate of MVEF estimated based on paleoseismic studies could potentially have errors due to triggered landslides from nearby earthquake events.


Seismological Research Letters | 2015

Rapid Damage Mapping for the 2015 Mw 7.8 Gorkha Earthquake Using Synthetic Aperture Radar Data from COSMO–SkyMed and ALOS-2 Satellites

Sang-Ho Yun; Kenneth W. Hudnut; S. E. Owen; Frank H. Webb; Mark Simons; Patrizia Sacco; Eric Gurrola; Gerald Manipon; Cunren Liang; Eric J. Fielding; Pietro Milillo; Hook Hua; Alessandro Coletta

The 25 April 2015 M_w 7.8 Gorkha earthquake caused more than 8000 fatalities and widespread building damage in central Nepal. The Italian Space Agency’s COSMO–SkyMed Synthetic Aperture Radar (SAR) satellite acquired data over Kathmandu area four days after the earthquake and the Japan Aerospace Exploration Agency’s Advanced Land Observing Satellite-2 SAR satellite for larger area nine days after the mainshock. We used these radar observations and rapidly produced damage proxy maps (DPMs) derived from temporal changes in Interferometric SAR coherence. Our DPMs were qualitatively validated through comparison with independent damage analyses by the National Geospatial-Intelligence Agency and the United Nations Institute for Training and Research’s United Nations Operational Satellite Applications Programme, and based on our own visual inspection of DigitalGlobe’s WorldView optical pre- versus postevent imagery. Our maps were quickly released to responding agencies and the public, and used for damage assessment, determining inspection/imaging priorities, and reconnaissance fieldwork.


Geophysical Research Letters | 2016

Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan

Mong-Han Huang; Hsin Tung; Eric J. Fielding; Hsin-Hua Huang; Cunren Liang; Chung Huang; Jyr-Ching Hu

Rapid shortening in convergent mountain belts is often accommodated by slip on faults at multiple levels in upper crust, but no geodetic observation of slip at multiple levels within hours of a moderate earthquake has been shown before. Here we show clear evidence of fault slip within a shallower thrust at 5–10 km depth in SW Taiwan triggered by the 2016 Mw 6.4 MeiNong earthquake at 15–20 km depth. We constrain the primary coseismic fault slip with kinematic modeling of seismic and geodetic measurements and constrain the triggered slip and fault geometry using synthetic aperture radar interferometry. The shallower thrust coincides with a proposed duplex located in a region of high fluid pressure and high interseismic uplift rate, and may be sensitive to stress perturbations. Our results imply that under tectonic conditions such as high-background stress level and high fluid pressure, a moderate lower crustal earthquake can trigger faults at shallower depth.


IEEE Transactions on Geoscience and Remote Sensing | 2016

Interferometric Processing of ScanSAR Data Using Stripmap Processor: New Insights From Coregistration

Cunren Liang; Eric J. Fielding

Processing scanning synthetic aperture radar (ScanSAR) data using a stripmap processor, which is called full-aperture processing, has been the choice of many researchers. ScanSAR data are known to require very high azimuth coregistration precision which is usually achieved by a geometrical coregistration followed by a spectral diversity coregistration on the ScanSAR burst. However, for full-aperture processing, since individual bursts are no longer available for spectral diversity coregistration, the cross-correlation method in practice is still used to coregister ScanSAR data as stripmap data. We analyze the azimuth coregistration precision requirement of full-aperture processing and find that its requirement can be significantly relaxed. This is confirmed by a number of experiments, including simulations and real data experiments whose results are in good agreement with each other. An additional experiment on the cross-correlation method supports its use in full-aperture processing. Concluding from the experimental results, we further propose a simple method to evaluate the azimuth coregistration precision requirement for practical use. Finally, we present examples with ALOS-2 ScanSAR data.


IEEE Transactions on Geoscience and Remote Sensing | 2017

Measuring Azimuth Deformation With L-Band ALOS-2 ScanSAR Interferometry

Cunren Liang; Eric J. Fielding

We analyze the methods for measuring azimuth deformation with the L-band Advanced Land Observing Satellite-2 (ALOS-2) scanning synthetic aperture radar (ScanSAR) interferometry. To implement the methods, we extract focused bursts from the ALOS-2 full-aperture product, which is the only product available for ScanSAR interferometry at present. The extracted bursts are properly processed to measure azimuth deformation using interferometric phase. We apply the range split-spectrum method to ScanSAR to estimate the differential ionospheric phase of the interferogram, and take the azimuth derivative of the differential ionospheric phase to mitigate the relative azimuth shift caused by ionosphere. For the first time, azimuth deformation of a large earthquake (April 25, 2015 Nepal earthquake) is nearly completely measured by the L-band ScanSAR interferometry with moderate precision. The result is validated by the azimuth deformation measured by incoherent cross correlation using a pair of high-resolution RADARSAT-2 images. In addition to the final azimuth deformation, we show the possibility of processing full-aperture ScanSAR product using a burst-by-burst approach to form regular interferograms. We also show the recent strong large-scale ionospheric effects on the L-band ALOS-2 ScanSAR interferograms. Other possible applications of this paper include measuring the movement of glaciers.


IEEE Transactions on Geoscience and Remote Sensing | 2017

Interferometry With ALOS-2 Full-Aperture ScanSAR Data

Cunren Liang; Eric J. Fielding

Advanced Land Observing Satellite-2 (ALOS-2) is designed to routinely acquire both scanning synthetic aperture radar (ScanSAR) and stripmap data. In this paper, we present a special multiband bandpass filter (MBF) to remove azimuth nonoverlap spectra for the interferometric processing of ALOS-2 full-aperture ScanSAR product. As required by the MBF, we estimate the important ScanSAR system parameters and the start times of raw bursts using ALOS-2 full-aperture ScanSAR image. The resulting MBF can remove the nonoverlap spectra caused by both Doppler centroid frequency difference and burst misalignment. It can be used in ScanSAR–ScanSAR interferometry, as well as ScanSAR–stripmap interferometry. Based on the MBF, we propose a single processing workflow that is able to implement both ScanSAR–ScanSAR interferometry and ScanSAR–stripmap interferometry. Finally, we present example interferograms of the 2015 Gorkha earthquake in Nepal processed using the proposed processing workflow. The interferograms are greatly improved after applying the MBF to remove the significant amount of nonoverlap spectra in the data.


Journal of Geophysical Research | 2017

Source characteristics of the 2015 Mw6.5 Lefkada, Greece, strike‐slip earthquake

Diego Melgar; Athanassios Ganas; Jianghui Geng; Cunren Liang; Eric J. Fielding; I. Kassaras

We present a kinematic slip model from the inversion of 1 Hz GPS, strong motion, and interferometric synthetic aperture radar (InSAR) data for the 2015 Mw6.5 Lefkada, Greece, earthquake. We will show that most of the slip during this event is updip of the hypocenter (10.7 km depth) with substantial slip (>0.5 m) between 5 km depth and the surface. The peak slip is ~1.6 m, and the inverted rake angles show predominantly strike-slip motion. Slip concentrates mostly to the south of the hypocenter, and the source time function indicates a total duration of ~17 s with peak moment rate at ~6 s. We will show that a 65° dipping geometry is the most plausible due to a lack of polarity reversals in the InSAR data and good agreement with Coulomb stress modeling, aftershock locations, and regional moment tensors. We also note that there was an ~20 cm peak-to-peak tsunami observed at one tide gauge station 300 km away from the earthquake. We will discuss tsunami modeling results and study the possible source of the amplitude discrepancy between the modeled and the observed data at far-field tide gauges.


Journal of Geophysical Research | 2017

The 2016 Kumamoto Mw = 7.0 Earthquake: A Significant Event in a Fault–Volcano System

Han Yue; Zachary E. Ross; Cunren Liang; Sylvain Michel; Heresh Fattahi; Eric J. Fielding; Angelyn W. Moore; Zhen Liu; Bo Jia

The 2016 Kumamoto earthquake sequence occurred on the Futagawa–Hinagu fault zone near the Aso volcano on Kyushu island. The sequence was initiated with two major (M_w ≥ 6.0) foreshocks, and the mainshock (M_w = 7.0) occurred 25 h after the second major foreshock. We combine GPS, strong motion, synthetic aperture radar images, and surface offset data in a joint inversion to resolve the kinematic rupture process of the mainshock and coseismic displacement of the foreshocks. The joint inversion results reveal a unilateral rupture process for the mainshock involving sequential rupture of four major asperities. The slip area of the foreshocks and mainshock and the aftershock loci form a detailed complementary pattern. The mainshock rupture terminates near the rim of the caldera, leaving a ~10 km long gap of aftershocks. This area is characterized by high temperature and low shear wave velocity, density, and resistivity, which may be related to the partially melted geothermal condition. Ductile material property near the volcano may act as a “material barrier” to the dynamic rupture. Topographic weight of the caldera increases compressional normal stress on the fault plane, which may behave as a “stress barrier.” Long-term seismic hazard and deformation behaviors related to these two types of barriers are discussed in terms of the associated frictional mechanism. Significant postseismic creeps observed near the volcano area indicates a velocity strengthening frictional behavior near the rupture termination, which confirms that the “material barrier” mechanism is likely the dominant rupture termination mechanism.

Collaboration


Dive into the Cunren Liang's collaboration.

Top Co-Authors

Avatar

Eric J. Fielding

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mong-Han Huang

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Angelyn W. Moore

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Diego Melgar

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark Simons

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Pietro Milillo

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han Yue

University of California

View shared research outputs
Top Co-Authors

Avatar

S. E. Owen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Zhen Liu

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge