Cunyou Zhao
Hong Kong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cunyou Zhao.
Molecular Psychiatry | 2011
Frank Wing Pun; Cunyou Zhao; Wing-Sze Lo; Siu Kin Ng; Shui Ying Tsang; Vishwajit L. Nimgaonkar; W.S. Chung; Gabor Sandor Ungvari; Hong Xue
Schizophrenia is a complex genetic disorder, the inheritance pattern of which is likely complicated by epigenetic factors yet to be elucidated. In this study, transmission disequilibrium tests with family trios yielded significant differences between paternal and maternal transmissions of the disease-associated single-nucleotide polymorphism (SNP) rs6556547 and its haplotypes. The minor allele (T) of rs6556547 was paternally undertransmitted to male schizophrenic offsprings, and this parent-of-origin effect strongly suggested that GABRB2 is imprinted. ‘Flipping’ of allelic expression in heterozygotes of SNP rs2229944 (C/T) in GABRB2 or rs2290732 (G/A) in the neighboring GABRA1 was compatible with imprinting effects on gene expression. Clustering analysis of GABRB2 mRNA expressions suggested that imprinting brought about the observed two-tiered distribution of expression levels in controls with heterozygous genotype at the disease-associated SNP rs1816071 (A/G). The deficit of upper-tiered expressions accounted for the lowered expression levels in the schizophrenic heterozygotes. The occurrence of a two-tiered distribution furnished support for imprinting, and also pointed to the necessity of differentiating between two kinds of heterozygotes of different parental origins in disease association studies on GABRB2. Bisulfite sequencing revealed hypermethylation in the neighborhood of SNP rs1816071, and methylation differences between controls and schizophrenia patients. Notably, the two schizophrenia-associated SNPs rs6556547 and rs1816071 overlapped with a CpG dinucleotide, thereby opening the possibility that CpG methylation status of these sites could have an impact on the risk of schizophrenia. Thus multiple lines of evidence pointed to the occurrence of imprinting in the GABRB2 gene and its possible role in the development of schizophrenia.
Biochemical Pharmacology | 2010
Lihuan Ren; Feng Wang; Zhiwen Xu; Wing Man Chan; Cunyou Zhao; Hong Xue
6-Hydroxyflavone (6HF), a naturally occurring flavonoid, was previously reported to bind to type A gamma-aminobutyric acid (GABA(A)) receptors benzodiazepine (BZ) site with moderate binding affinity. In the present study, we showed that 6HF partially potentiated GABA-induced currents in native GABA(A) receptors expressed in cortical neurons via BZ site, as the enhancement was blocked by the antagonist flumazenil. Furthermore, in patch clamp studies, 6HF displayed significant preference for alpha(2)- and alpha(3)-containing subtypes, which were thought to mediate anxiolytic effect, compared to alpha(1)- and alpha(5)-containing subtypes expressed in HEK 293T cells. In mice, 6HF exhibited anxiolytic-like effect in the elevated plus-maze test, unaccompanied at anxiolytic doses by the sedative, cognitive impairing, myorelaxant, motor incoordination and anticonvulsant effects commonly associated with classical BZs when tested in the hole-board, step-through passive avoidance, horizontal wire, rotarod, and pentylenetetrazol (PTZ)-induced seizure tests, respectively. The findings therefore identified 6HF as a promising drug candidate for the treatment of anxiety-like disorders.
Biological Psychiatry | 2007
W.S. Lo; Mutsuo Harano; Micha Gawlik; Zhiliang Yu; Jianhuan Chen; Frank Wing Pun; Ka Lok Tong; Cunyou Zhao; Siu Kin Ng; Shui Ying Tsang; Naohisa Uchimura; Gerald Stöber; Hong Xue
BACKGROUND Single nucleotide polymorphisms (SNPs) and haplotypes in intron 8 of type A gamma-aminobutyric acid (GABA(A)) receptor beta2 subunit gene (GABRB2) were initially found to be associated with schizophrenia in Chinese. This finding was subjected to cross-validation in this study with Japanese (JP) and German Caucasian (GE) subjects. METHODS Single nucleotide polymorphisms discovery and genotyping were carried out through resequencing of a 1839 base pair (bp) region in GABRB2. Tagging SNPs (tSNPs) were selected based on linkage disequilibrium (LD), combinations of which were analyzed with Bonferroni correction and permutation for disease association. Random resampling was applied to generate size- and gender-balanced cases and control subjects. RESULTS Out of the 17 SNPs (9.2/kilobase [kb]) revealed, 6 were population-specific. Population variations in LD were observable, and at least two low LD points were identified in both populations. Although disease association at single SNP level was only shown in GE, strong association was demonstrated in both JP (p = .0002 - .0191) and GE (p = .0033 - .0410) subjects, centering on haplotypes containing rs1816072 and rs1816071. Among different clinical subtypes, the most significant association was exhibited by systematic schizophrenia. CONCLUSIONS Cross-population validation of GABRB2 association with schizophrenia has been obtained with JP and GE subjects, with the genotype-disease correlations being strongest in systematic schizophrenia, the most severe subtype of the disease.
Molecular Psychiatry | 2006
Cunyou Zhao; Zhiwen Xu; Jianhuan Chen; Zhiliang Yu; Ka Lok Tong; Wing-Sze Lo; Frank Wing Pun; Siu Kin Ng; Shui Ying Tsang; Hong Xue
Single nucleotide polymorphisms in type A γ-aminobutyric acid (GABAA) receptor β2 subunit gene (GABRB2) were found to be associated with schizophrenia in Chinese, German, Japanese and Portuguese. To explore potential functional consequences of these DNA sequence polymorphisms, this study examined the expression and electrophysiological properties of two alternatively spliced products of GABRB2 along with genotypical disease association analysis. Real-time quantitative polymerase chain reaction, performed with a cohort of 31 schizophrenics and 31 controls of US population, showed 21.7% reduction in the expression of the long isoform β2L, 13.4% in the short isoform β2S and 15.8% in the sum of the two isoforms β2T in postmortem schizophrenic brain. Furthermore, two independent mRNA quantitation methods showed that the relative expression of the long over the short isoforms was significantly decreased, suggesting the occurrence of altered splicing, in schizophrenia. In male schizophrenics, the heterozygous genotypes of rs1876071 (T/C) and rs1876072 (A/G) were correlated with reduced expression of β2L, β2S and β2T, and the heterozygous of rs2546620 (A/G) and homozygous-minor of rs1876071 (C/C) and rs1876072 (G/G) were correlated with reduced expression of β2T. Significant correlations of expression levels with different alleles and haplotypes were also indicated by quantitative trait analysis. Recombinant GABAA receptors expressed in HEK293 human cells containing β2L underwent a steeper current rundown upon repetitive GABA activation than receptors containing β2S. The results thus revealed genotype-dependent expression of the alternatively spliced isoforms of GABAA receptor β2 subunit, giving rise to electrophysiological consequences that could play an important role in the pathogenesis mechanism of schizophrenia.
PLOS ONE | 2007
Wing-Sze Lo; Zhiwen Xu; Zhiliang Yu; Frank Wing Pun; Siu-Kin Ng; Jianhuan Chen; Ka-Lok Tong; Cunyou Zhao; Xiaojing Xu; Shui Ying Tsang; Mutsuo Harano; Gerald Stöber; Vishwajit L. Nimgaonkar; Hong Xue
The gamma-aminobutyric acid type-A (GABAA) receptor plays a major role in inhibitory neurotransmissions. Intronic SNPs and haplotypes in GABRB2, the gene for GABAA receptor β2 subunit, are associated with schizophrenia and correlated with the expression of two alternatively spliced β2 isoforms. In the present study, using chimpanzee as an ancestral reference, high frequencies were observed for the derived (D) alleles of the four SNPs rs6556547, rs187269, rs1816071 and rs1816072 in GABRB2, suggesting the occurrence of positive selection for these derived alleles. Coalescence-based simulation showed that the population frequency spectra and the frequencies of H56, the haplotype having all four D alleles, significantly deviated from neutral-evolution expectation in various demographic models. Haplotypes containing the derived allele of rs1816072 displayed significantly less diversity compared to haplotypes containing its ancestral allele, further supporting positive selection. The variations in DD-genotype frequencies in five human populations provided a snapshot of the evolutionary history, which suggested that the positive selections of the D alleles are recent and likely ongoing. The divergence between the DD-genotype profiles of schizophrenic and control samples pointed to the schizophrenia-relevance of positive selections, with the schizophrenic samples showing weakened selections compared to the controls. These DD-genotypes were previously found to increase the expression of β2, especially its long isoform. Electrophysiological analysis showed that this long β2 isoform favored by the positive selections is more sensitive than the short isoform to the inhibition of GABAA receptor function by energy depletion. These findings represent the first demonstration of positive selection in a schizophrenia-associated gene.
PLOS ONE | 2009
Cunyou Zhao; Zhiwen Xu; Feng Wang; Jianhuan Chen; Siu Kin Ng; Pak Wing Wong; Zhiliang Yu; Frank Wing Pun; Lihuan Ren; Wing-Sze Lo; Shui Ying Tsang; Hong Xue
Background Non-coding single nucleotide polymorphisms (SNPs) in GABRB2, the gene for β2-subunit of gamma-aminobutyric acid type A (GABAA) receptor, have been associated with schizophrenia (SCZ) and quantitatively correlated to mRNA expression and alternative splicing. Methods and Findings Expression of the Exon 10 region of GABRB2 from minigene constructs revealed this region to be an “alternative splicing hotspot” that readily gave rise to differently spliced isoforms depending on intron sequences. This led to a search in human brain cDNA libraries, and the discovery of two novel isoforms, β2S1 and β2S2, bearing variations in the neighborhood of Exon-10. Quantitative real-time PCR analysis of postmortem brain samples showed increased β2S1 expression and decreased β2S2 expression in both SCZ and bipolar disorder (BPD) compared to controls. Disease-control differences were significantly correlated with SNP rs187269 in BPD males for both β2S1 and β2S2 expressions, and significantly correlated with SNPs rs2546620 and rs187269 in SCZ males for β2S2 expression. Moreover, site-directed mutagenesis indicated that Thr365, a potential phosphorylation site in Exon-10, played a key role in determining the time profile of the ATP-dependent electrophysiological current run-down. Conclusion This study therefore provided experimental evidence for the importance of non-coding sequences in the Exon-10 region in GABRB2 with respect to β2-subunit splicing diversity and the etiologies of SCZ and BPD.
Schizophrenia Research | 2012
Cunyou Zhao; Feng Wang; Frank Wing Pun; Lingling Mei; Lihuan Ren; Zhiliang Yu; Sin Kin Ng; Jianhuan Chen; Shui Ying Tsang; Hong Xue
INTRODUCTION To improve the understanding of psychotic abnormalities and their non-Mendelian inheritance patterns, the epigenetic regulation of the psychotic disorder-associated GABRB2, gene for the type A γ-aminobutyric acid receptor β(2)-subunit, was investigated. METHODS Expression of GABRB2, and the epigenetic regulatory enzymes histone deacetylases (HDACs) and DNA methyltransferases (DNMTs) in mouse and postmortem human brains was analyzed using real-time PCR. RESULTS Results showed that expression of GABRB2 isoforms significantly increased over time in both mouse and human, especially for the long splicing isoform. In the brains of non-psychiatric controls (CON), a significant positive correlation of GABRB2 expression with age was observed in individuals with MM genotypes of the single nucleotide polymorphisms (SNPs) rs187269 and rs1816072. This was reversed to a significant negative correlation in schizophrenics (SCZ). A similar reversal was also displayed by bipolar disorder (BPD) patients. In parallel, a significant co-variation of HDAC1 with GABRB2 expression observed in CON remained significant in BPD but not in SCZ; comparably, a significant co-variation of HDAC2 with GABRB2 expression observed in CON became non-significant in both SCZ and BPD. Moreover, co-variations of DNMT1 and DNMT3B with GABRB2, not observable in CON, became significant in BPD. CONCLUSION These findings demonstrated that GABRB2 expression was under epigenetic regulation that varied with development, genotype and disease status, and these regulatory mechanisms were observably disrupted in SCZ and BPD. This study provided insight into the complex inheritance patterns of psychiatric disorders, and pointed to the involvement of epigenetic dysregulation in the disease process of major psychotic disorders.
PLOS ONE | 2010
Siu Kin Ng; Wing-Sze Lo; Frank Wing Pun; Cunyou Zhao; Zhiliang Yu; Jianhuan Chen; Ka Lok Tong; Zhiwen Xu; Shui Ying Tsang; Qiang Yang; Weichuan Yu; Vishwajit L. Nimgaonkar; Gerald Stöber; Mutsuo Harano; Hong Xue
Background Schizophrenia is a major disorder with complex genetic mechanisms. Earlier, population genetic studies revealed the occurrence of strong positive selection in the GABRB2 gene encoding the β2 subunit of GABAA receptors, within a segment of 3,551 bp harboring twenty-nine single nucleotide polymorphisms (SNPs) and containing schizophrenia-associated SNPs and haplotypes. Methodology/Principal Findings In the present study, the possible occurrence of recombination in this ‘S1–S29’ segment was assessed. The occurrence of hotspot recombination was indicated by high resolution recombination rate estimation, haplotype diversity, abundance of rare haplotypes, recurrent mutations and torsos in haplotype networks, and experimental haplotyping of somatic and sperm DNA. The sub-segment distribution of relative recombination strength, measured by the ratio of haplotype diversity (Hd) over mutation rate (θ), was indicative of a human specific Alu-Yi6 insertion serving as a central recombining sequence facilitating homologous recombination. Local anomalous DNA conformation attributable to the Alu-Yi6 element, as suggested by enhanced DNase I sensitivity and obstruction to DNA sequencing, could be a contributing factor of the increased sequence diversity. Linkage disequilibrium (LD) analysis yielded prominent low LD points that supported ongoing recombination. LD contrast revealed significant dissimilarity between control and schizophrenic cohorts. Among the large array of inferred haplotypes, H26 and H73 were identified to be protective, and H19 and H81 risk-conferring, toward the development of schizophrenia. Conclusions/Significance The co-occurrence of hotspot recombination and positive selection in the S1–S29 segment of GABRB2 has provided a plausible contribution to the molecular genetics mechanisms for schizophrenia. The present findings therefore suggest that genome regions characterized by the co-occurrence of positive selection and hotspot recombination, two interacting factors both affecting genetic diversity, merit close scrutiny with respect to the etiology of common complex disorders.
Biochemical Society Transactions | 2009
Jianhuan Chen; Shui Ying Tsang; Cunyou Zhao; Frank Wing Pun; Zhiliang Yu; Lingling Mei; W.S. Lo; Shisong Fang; Hua Liu; Gerald Stöber; Hong Xue
The SCZ (schizophrenia)-associated GABA(A) receptor (gamma-aminobutyric acid type A receptor) beta(2) subunit gene GABRB2 was recently associated with BPD (bipolar disorder). Although weaker than its association with SCZ, significant association of GABRB2 with BPD was found in both German and Chinese, especially for the haplotypes rs1816071-rs187269 and rs1816072-rs187269 for which the M-M variants showed higher frequency in disease than the control. Significant genotype-dependent reduction in GABRB2 expression was shown for BPD, but to a lesser extent than that for SCZ. Temporal effects on GABRB2 expression were observed. Moreover, for the homozygous major genotypes of rs1816071, rs1816072 and rs187269, expression increased with time in CON but decreased in SCZ and BPD. The genotypes of these three SNPs (single nucleotide polymorphisms) were further correlated with antipsychotics dosage in SCZ cohorts. The findings highlight the importance of GABRB2 in neuropsychiatric disease aetiology, with respect to haplotype association, as well as reduction of and temporal effects on gene expression in both SCZ and BPD, but to a lesser extent in the latter, supporting the suggestion that functional psychosis can be conceptualized as a continuous spectrum of clinical phenotypes rather than as distinct categories.
PLOS ONE | 2013
Shui Ying Tsang; Songfa Zhong; Lingling Mei; Jianhuan Chen; Siu-Kin Ng; Frank Wing Pun; Cunyou Zhao; Bing-Yi Jing; Robin Chark; Jianhua Guo; Yunlong Tan; Lijun Li; Chuan-Yue Wang; Soo Hong Chew; Hong Xue
The occurrence of positive selection in schizophrenia-associated GABRB2 suggests a broader impact of the gene product on population fitness. The present study considered the possibility of cognition-related GABRB2 involvement by examining the association of GABRB2 with psychosis and altruism, respectively representing psychiatric and psychological facets of social cognition. Four single nucleotide polymorphisms (SNPs) were genotyped for quantitative trait analyses and population-based association studies. Psychosis was measured by either the Positive and Negative Syndrome Scale (PANSS) or antipsychotics dosage, and altruism was based on a self-report altruism scale. The minor alleles of SNPs rs6556547, rs1816071 and rs187269 in GABRB2 were correlated with high PANSS score for positive symptoms in a Han Chinese schizophrenic cohort, whereas those of rs1816071 and rs1816072 were associated with high antipsychotics dosage in a US Caucasian schizophrenic cohort. Moreover, strongly significant GABRB2-disease associations were found among schizophrenics with severe psychosis based on high PANSS positive score, but no significant association was observed for schizophrenics with only mild psychosis. Interestingly, in addition to association with psychosis in schizophrenics, rs187269 was also associated with altruism in healthy Han Chinese. Furthermore, parallel to correlation with severe psychosis, its minor allele was correlated with high altruism scores. These findings revealed that GABRB2 is associated with psychosis, the core symptom and an endophenotype of schizophrenia. Importantly, the association was found across the breadth of the psychiatric (psychosis) to psychological (altruism) spectrum of social cognition suggesting GABRB2 involvement in human cognition.