Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Curt D. Storlazzi is active.

Publication


Featured researches published by Curt D. Storlazzi.


Geological Society of America Bulletin | 2000

Influence of El Niño–Southern Oscillation (ENSO) events on the evolution of central California's shoreline

Curt D. Storlazzi; Gary B. Griggs

Significant sea-cliff erosion and storm damage occurred along the central coast of California during the 1982‐1983 and 1997‐1998 El Nino winters. This generated interest among scientists and land-use planners in how historic El Nino‐Southern Oscillation (ENSO) winters have affected the coastal climate of central California. A relative ENSO intensity index based on oceanographic and meteorologic data defines the timing and magnitude of ENSO events over the past century. The index suggests that five higher intensity (relative values 4‐6) and 17 lower intensity (relative values 1‐3) ENSO events took place between 1910 and 1995. The ENSO intensity index correlates with fluctuations in the time series of cyclone activity, precipitation, detrended sea level, wave height, sea-surface temperature, and sea-level barometric pressure. Wave height, sea level, and precipitation, which are the primary external forcing parameters in sea-cliff erosion, increase nonlinearly with increasing relative ENSO event intensity. The number of storms that caused coastal erosion or storm damage and the historic occurrence of largescale sea-cliff erosion along the central coast also increase nonlinearly with increasing relative event intensity. These correlations and the frequency distribution of relative ENSO event intensities indicate that moderate- to high-intensity ENSO events cause the most sea-cliff erosion and shoreline recession over the course of a century.


Coral Reefs | 2011

The use (and misuse) of sediment traps in coral reef environments: Theory, observations, and suggested protocols

Curt D. Storlazzi; Michael E. Field; Michael H. Bothner

Sediment traps are commonly used as standard tools for monitoring “sedimentation” in coral reef environments. In much of the literature where sediment traps were used to measure the effects of “sedimentation” on corals, it is clear from deployment descriptions and interpretations of the resulting data that information derived from sediment traps has frequently been misinterpreted or misapplied. Despite their widespread use in this setting, sediment traps do not provide quantitative information about “sedimentation” on coral surfaces. Traps can provide useful information about the relative magnitude of sediment dynamics if trap deployment standards are used. This conclusion is based first on a brief review of the state of knowledge of sediment trap dynamics, which has primarily focused on traps deployed high above the seabed in relatively deep water, followed by our understanding of near-bed sediment dynamics in shallow-water environments that characterize coral reefs. This overview is followed by the first synthesis of near-bed sediment trap data collected with concurrent hydrodynamic information in coral reef environments. This collective information is utilized to develop nine protocols for using sediment traps in coral reef environments, which focus on trap parameters that researchers can control such as trap height (H), trap mouth diameter (D), the height of the trap mouth above the substrate (zo), and the spacing between traps. The hydrodynamic behavior of sediment traps and the limitations of data derived from these traps should be forefront when interpreting sediment trap data to infer sediment transport processes in coral reef environments.


Geophysical Research Letters | 2015

The influence of coral reefs and climate change on wave-driven flooding of tropical coastlines

Ellen Quataert; Curt D. Storlazzi; Arnold van Rooijen; Olivia M. Cheriton; Ap van Dongeren

A numerical model, XBeach, calibrated and validated on field data collected at Roi-Namur Island on Kwajalein Atoll in the Republic of Marshall Islands, was used to examine the effects of different coral reef characteristics on potential coastal hazards caused by wave-driven flooding and how these effects may be altered by projected climate change. The results presented herein suggest that coasts fronted by relatively narrow reefs with steep fore reef slopes (~1:10 and steeper) and deeper, smoother reef flats are expected to experience the highest wave runup. Wave runup increases for higher water levels (sea level rise), higher waves, and lower bed roughness (coral degradation), which are all expected effects of climate change. Rising sea levels and climate change will therefore have a significant negative impact on the ability of coral reefs to mitigate the effects of coastal hazards in the future.


Geological Society of America Bulletin | 2003

Quantitative morphology of a fringing reef tract from high-resolution laser bathymetry: Southern Molokai, Hawaii

Curt D. Storlazzi; Joshua B. Logan; Michael E. Field

High-resolution Scanning Hydrographic Operational Airborne Lidar Survey (SHOALS) laser-determined bathymetric data were used to define the morphology of spur-and-groove structures on the fringing reef off the south coast of Molokai, Hawaii. These data provide a basis for mapping and analyzing morphology of the reef with a level of precision and spatial coverage never before attained. An extensive fringing coral reef stretches along the central two-thirds of Molokai9s south shore (∼40 km); along the east and west ends there is only a thin veneer of living coral with no developed reef complex. In total, ∼4800 measurements of spur-and-groove height and the distance between adjacent spur crests (wavelength) were obtained along four isobaths. Between the 5m and 15m isobaths, the mean spur height increased from 0.7 m to 1.6 m, whereas the mean wavelength increased from 71 m to 104 m. Reef flat width was found to exponentially decrease with increasing wave energy. Overall, mean spur-and-groove height and wavelength were shown to be inversely proportional to wave energy. In high-energy environments, spur-and-groove morphology remains relatively constant across all water depths. In low-energy environments, however, spur-and-groove structures display much greater variation; they are relatively small and narrow in shallow depths and develop into much larger and broader features in deeper water. Therefore, it appears that waves exert a primary control on both the small- and large-scale morphology of the reef off south Molokai.


Scientific Reports | 2015

Many Atolls May be Uninhabitable Within Decades Due to Climate Change.

Curt D. Storlazzi; E. P. L. Elias; Paul Berkowitz

Observations show global sea level is rising due to climate change, with the highest rates in the tropical Pacific Ocean where many of the world’s low-lying atolls are located. Sea-level rise is particularly critical for low-lying carbonate reef-lined atoll islands; these islands have limited land and water available for human habitation, water and food sources, and ecosystems that are vulnerable to inundation from sea-level rise. Here we demonstrate that sea-level rise will result in larger waves and higher wave-driven water levels along atoll islands’ shorelines than at present. Numerical model results reveal waves will synergistically interact with sea-level rise, causing twice as much land forecast to be flooded for a given value of sea-level rise than currently predicted by current models that do not take wave-driven water levels into account. Atolls with islands close to the shallow reef crest are more likely to be subjected to greater wave-induced run-up and flooding due to sea-level rise than those with deeper reef crests farther from the islands’ shorelines. It appears that many atoll islands will be flooded annually, salinizing the limited freshwater resources and thus likely forcing inhabitants to abandon their islands in decades, not centuries, as previously thought.


Scientific Reports | 2017

Doubling of coastal flooding frequency within decades due to sea-level rise

Sean Vitousek; Patrick L. Barnard; Charles H. Fletcher; Neil Frazer; Li H. Erikson; Curt D. Storlazzi

Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.


Coral Reefs | 2015

The influence of grain size, grain color, and suspended-sediment concentration on light attenuation: Why fine-grained terrestrial sediment is bad for coral reef ecosystems

Curt D. Storlazzi; Ben K. Norris; Kurt J. Rosenberger

Sediment has been shown to be a major stressor to coral reefs globally. Although many researchers have tested the impact of sedimentation on coral reef ecosystems in both the laboratory and the field and some have measured the impact of suspended sediment on the photosynthetic response of corals, there has yet to be a detailed investigation on how properties of the sediment itself can affect light availability for photosynthesis. We show that finer-grained and darker-colored sediment at higher suspended-sediment concentrations attenuates photosynthetically active radiation (PAR) significantly more than coarser, lighter-colored sediment at lower concentrations and provide PAR attenuation coefficients for various grain sizes, colors, and suspended-sediment concentrations that are needed for biophysical modeling. Because finer-grained sediment particles settle more slowly and are more susceptible to resuspension, they remain in the water column longer, thus causing greater net impact by reducing light essential for photosynthesis over a greater duration. This indicates that coral reef monitoring studies investigating sediment impacts should concentrate on measuring fine-grained lateritic and volcanic soils, as opposed to coarser-grained siliceous and carbonate sediment. Similarly, coastal restoration efforts and engineering solutions addressing long-term coral reef ecosystem health should focus on preferentially retaining those fine-grained soils rather than coarse silt and sand particles.


Journal of Sedimentary Research | 2004

Holocene reef accretion: southwest Molokai, Hawaii, U.S.A.

Mary Engels; Charles H. Fletcher; Michael E. Field; Curt D. Storlazzi; Eric E. Grossman; John J.B. Rooney; Christopher L. Conger; Craig R. Glenn

ABSTRACT Two reef systems off south Molokai, Hale O Lono and Hikauhi (separated by only 10 km), show strong and fundamental differences in modern ecosystem structure and Holocene accretion history that reflect the influence of wave-induced near-bed shear stresses on reef development in Hawaii. Both sites are exposed to similar impacts from south, Kona, and trade-wind swell. However, the Hale O Lono site is exposed to north swell and the Hikuahi site is not. As a result, the reef at Hale O Lono records no late Holocene net accretion while the reef at Hikauhi records consistent and robust accretion over late Holocene time. Analysis and dating of 24 cores from Hale O Lono and Hikauhi reveal the presence of five major lithofacies that reflect paleo-environmental conditions. In order of decreasing depositional energy they are: (1) coral-algal bindstone; (2) mixed skeletal rudstone; (3) massive coral framestone; (4) unconsolidated floatstone; and (5) branching coral framestone-bafflestone. At Hale O Lono, 10 cores document a backstepping reef ranging from 8,100 cal yr BP (offshore) to 4,800 cal yr BP (nearshore). A depauperate community of modern coral diminishes shoreward and seaward of 15 m depth due to wave energy, disrupted recruitment activities, and physical abrasion. Evidence suggests a change from conditions conducive to accretion during the early Holocene to conditions detrimental to accretion in the late Holocene. Reef structure at Hikauhi, reconstructed from 14 cores, reveals a thick, rapidly accreting and young reef (maximum age 900 cal yr BP). Living coral cover on this reef increases seaward with distance from the reef crest but terminates at a depth of 20 m where the reef ends in a large sand field. The primary limitation on vertical reef growth is accommodation space under wave base, not recruitment activities or energy conditions. Interpretations of cored lithofacies suggest that modern reef growth on the southwest corner of Molokai, and by extension across Hawaii in general, is controlled by wave-induced near-bed shear stress related to refracted North Pacific swell. Holocene accretion patterns here also reflect the long-term influence of wave-induced near-bed shear stress from north swell during late Holocene time. This finding is consistent with other studies (e.g., Grigg 1998; Cabioch et al. 1999) that reflect the dominance of swell energy and sea level in controlling modern and late Holocene accretion elsewhere in Hawaii and across the Pacific and Indian oceans. Notably, however, this result is refined and clarified for Hawaii in the hypothesis of Rooney et al. (2003) stating that enhancement of the El Nino Southern Oscillation beginning approximately 5000 years ago led to increased north swell energy and signaled the end to net accretion along exposed coastlines in Hawaii. The exposure of Hale O Lono to north swell and the age of sea floor there (ca. 4,800 cal yr BP), coupled with the lack of north swell incidence at Hikauhi and the continuous accretion that has occurred there over the last millennium, strongly supports the ENSO reef hypothesis as outlined by Rooney et al. (2003). Other factors controlling Holocene reef accretion at the study site are relative sea-level position and rate of rise, and wave sheltering by Laau Point. Habitat suitable for reef accretion on the southwest shore of Molokai has shrunk throughout the Holocene.


Journal of Geophysical Research | 2011

Hydrodynamics of a bathymetrically complex fringing coral reef embayment: Wave climate, in situ observations, and wave prediction

Ron K. Hoeke; Curt D. Storlazzi; Peter V. Ridd

This paper examines the relationship between offshore wave climate and nearshore waves and currents at Hanalei Bay, Hawaii, an exposed bay fringed with coral reefs. Analysis of both offshore in situ data and numerical hindcasts identify the predominance of two wave conditions: a mode associated with local trade winds and an episodic pattern associated with distant source long-period swells. Analysis of 10 months of in situ data within the bay show that current velocities are up to an order of magnitude greater during long-period swell episodes than during trade wind conditions; overall circulation patterns are also fundamentally different. The current velocities are highly correlated with incident wave heights during the swell episodes, while they are not during the modal trade wind conditions. A phase-averaged wave model was implemented with the dual purpose of evaluating application to bathymetrically complex fringing reefs and to examine the propagation of waves into the nearshore in an effort to better explain the large difference in observed circulation during the two offshore wave conditions. The prediction quality of this model was poorer for the episodic condition than for the lower-energy mode, however, it illustrated how longer-period swells are preferentially refracted into the bay and make available far more nearshore wave energy to drive currents compared to waves during modal conditions. The highly episodic circulation, the nature of which is dependent on complex refraction patterns of episodic, long-period swell has implications for flushing and sediment dynamics for incised fringing reef-lined bays that characterize many high islands at low latitudes around the world.


Journal of Geophysical Research | 2016

Observations of wave transformation over a fringing coral reef and the importance of low-frequency waves and offshore water levels to runup, overwash, and coastal flooding

Olivia M. Cheriton; Curt D. Storlazzi; Kurt J. Rosenberger

Many low-lying tropical islands are susceptible to sea level rise and often subjected to overwash and flooding during large wave events. To quantify wave dynamics and wave-driven water levels on fringing coral reefs, a 5 month deployment of wave gauges and a current meter was conducted across two shore-normal transects on Roi-Namur Island in the Republic of the Marshall Islands. These observations captured two large wave events that had waves with maximum heights greater than 6 m with peak periods of 16 s over the fore reef. The larger event coincided with a peak spring tide, leading to energetic, highly skewed infragravity (0.04–0.004 Hz) and very low frequency (0.004–0.001 Hz) waves at the shoreline, which reached heights of 1.0 and 0.7 m, respectively. Water surface elevations, combined with wave runup, reached 3.7 m above the reef bed at the innermost reef flat adjacent to the toe of the beach, resulting in flooding of inland areas. This overwash occurred during a 3 h time window that coincided with high tide and maximum low-frequency reef flat wave heights. The relatively low-relief characteristics of this narrow reef flat may further drive shoreline amplification of low-frequency waves due to resonance modes. These results (1) demonstrate how the coupling of high offshore water levels with low-frequency reef flat wave energetics can lead to large impacts along fringing reef-lined shorelines, such as island overwash, and (2) lend support to the hypothesis that predicted higher sea levels will lead to more frequent occurrences of these extreme events, negatively impacting coastal resources and infrastructure.

Collaboration


Dive into the Curt D. Storlazzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joshua B. Logan

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Olivia M. Cheriton

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

M. Katherine Presto

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Li H. Erikson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Nadine E. Golden

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Kurt J. Rosenberger

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Amy E. Draut

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James B. Shope

University of California

View shared research outputs
Top Co-Authors

Avatar

Patrick L. Barnard

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge