Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Curt P. Van Tassell is active.

Publication


Featured researches published by Curt P. Van Tassell.


PLOS ONE | 2009

Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology

A. M. Ramos; R.P.M.A. Crooijmans; Nabeel A. Affara; Andreia J. Amaral; Alan Archibald; Jonathan E. Beever; Christian Bendixen; Carol Churcher; Richard Clark; Patrick Dehais; Mark Hansen; Jakob Hedegaard; Zhi-Liang Hu; Hindrik Hd Kerstens; Andy Law; Hendrik-Jan Megens; Denis Milan; D. J. Nonneman; G. A. Rohrer; Max F. Rothschild; T. P. L. Smith; Robert D. Schnabel; Curt P. Van Tassell; Jeremy F. Taylor; Ralph T Wiedmann; Lawrence B. Schook; M.A.M. Groenen

Background The dissection of complex traits of economic importance to the pig industry requires the availability of a significant number of genetic markers, such as single nucleotide polymorphisms (SNPs). This study was conducted to discover several hundreds of thousands of porcine SNPs using next generation sequencing technologies and use these SNPs, as well as others from different public sources, to design a high-density SNP genotyping assay. Methodology/Principal Findings A total of 19 reduced representation libraries derived from four swine breeds (Duroc, Landrace, Large White, Pietrain) and a Wild Boar population and three restriction enzymes (AluI, HaeIII and MspI) were sequenced using Illuminas Genome Analyzer (GA). The SNP discovery effort resulted in the de novo identification of over 372K SNPs. More than 549K SNPs were used to design the Illumina Porcine 60K+SNP iSelect Beadchip, now commercially available as the PorcineSNP60. A total of 64,232 SNPs were included on the Beadchip. Results from genotyping the 158 individuals used for sequencing showed a high overall SNP call rate (97.5%). Of the 62,621 loci that could be reliably scored, 58,994 were polymorphic yielding a SNP conversion success rate of 94%. The average minor allele frequency (MAF) for all scorable SNPs was 0.274. Conclusions/Significance Overall, the results of this study indicate the utility of using next generation sequencing technologies to identify large numbers of reliable SNPs. In addition, the validation of the PorcineSNP60 Beadchip demonstrated that the assay is an excellent tool that will likely be used in a variety of future studies in pigs.


Genome Research | 2010

Analysis of copy number variations among diverse cattle breeds

George E. Liu; Yali Hou; Bin Zhu; Maria Francesca Cardone; Lu Jiang; Angelo Cellamare; Apratim Mitra; L. J. Alexander; Luiz Lehmann Coutinho; Maria Elena Dell'Aquila; Lou C. Gasbarre; Gianni Lacalandra; Robert W. Li; Lakshmi K. Matukumalli; Dan J. Nonneman; Luciana Correia de Almeida Regitano; T. P. L. Smith; Jiuzhou Song; Tad S. Sonstegard; Curt P. Van Tassell; Mario Ventura; Evan E. Eichler; Tara G. McDaneld; J. W. Keele

Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here, we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in modern domesticated cattle using array comparative genomic hybridization (array CGH), quantitative PCR (qPCR), and fluorescent in situ hybridization (FISH). The array CGH panel included 90 animals from 11 Bos taurus, three Bos indicus, and three composite breeds for beef, dairy, or dual purpose. We identified over 200 candidate CNV regions (CNVRs) in total and 177 within known chromosomes, which harbor or are adjacent to gains or losses. These 177 high-confidence CNVRs cover 28.1 megabases or approximately 1.07% of the genome. Over 50% of the CNVRs (89/177) were found in multiple animals or breeds and analysis revealed breed-specific frequency differences and reflected aspects of the known ancestry of these cattle breeds. Selected CNVs were further validated by independent methods using qPCR and FISH. Approximately 67% of the CNVRs (119/177) completely or partially span cattle genes and 61% of the CNVRs (108/177) directly overlap with segmental duplications. The CNVRs span about 400 annotated cattle genes that are significantly enriched for specific biological functions, such as immunity, lactation, reproduction, and rumination. Multiple gene families, including ULBP, have gone through ruminant lineage-specific gene amplification. We detected and confirmed marked differences in their CNV frequencies across diverse breeds, indicating that some cattle CNVs are likely to arise independently in breeds and contribute to breed differences. Our results provide a valuable resource beyond microsatellites and single nucleotide polymorphisms to explore the full dimension of genetic variability for future cattle genomic research.


BMC Genetics | 2007

Whole genome linkage disequilibrium maps in cattle

Stephanie D. McKay; Robert D. Schnabel; B. Murdoch; Lakshmi K. Matukumalli; Jan Aerts; Wouter Coppieters; Denny Crews; Emmanuel Dias Neto; C. A. Gill; Chuan Gao; Hideyuki Mannen; Paul Stothard; Z. Wang; Curt P. Van Tassell; John L. Williams; Jeremy F. Taylor; Stephen S. Moore

BackgroundBovine whole genome linkage disequilibrium maps were constructed for eight breeds of cattle. These data provide fundamental information concerning bovine genome organization which will allow the design of studies to associate genetic variation with economically important traits and also provides background information concerning the extent of long range linkage disequilibrium in cattle.ResultsLinkage disequilibrium was assessed using r2 among all pairs of syntenic markers within eight breeds of cattle from the Bos taurus and Bos indicus subspecies. Bos taurus breeds included Angus, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black and Limousin while Bos indicus breeds included Brahman and Nelore. Approximately 2670 markers spanning the entire bovine autosomal genome were used to estimate pairwise r2 values. We found that the extent of linkage disequilibrium is no more than 0.5 Mb in these eight breeds of cattle.ConclusionLinkage disequilibrium in cattle has previously been reported to extend several tens of centimorgans. Our results, based on a much larger sample of marker loci and across eight breeds of cattle indicate that in cattle linkage disequilibrium persists over much more limited distances. Our findings suggest that 30,000–50,000 loci will be needed to conduct whole genome association studies in cattle.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics

Jared E. Decker; J. Chris Pires; Gavin C. Conant; Stephanie D. McKay; Michael P. Heaton; Kefei Chen; Alan Cooper; Johanna Vilkki; Christopher M. Seabury; Alexandre R Caetano; Gary S. Johnson; Rick A. Brenneman; Olivier Hanotte; Lori S. Eggert; Pamela Wiener; Jong-Joo Kim; Kwan Suk Kim; Tad S. Sonstegard; Curt P. Van Tassell; H. L. Neibergs; J. C. McEwan; Rudiger Brauning; Luiz Lehmann Coutinho; Masroor Ellahi Babar; Gregory A. Wilson; Matthew C. McClure; Megan M. Rolf; JaeWoo Kim; Robert D. Schnabel; Jeremy F. Taylor

The Pecorans (higher ruminants) are believed to have rapidly speciated in the Mid-Eocene, resulting in five distinct extant families: Antilocapridae, Giraffidae, Moschidae, Cervidae, and Bovidae. Due to the rapid radiation, the Pecoran phylogeny has proven difficult to resolve, and 11 of the 15 possible rooted phylogenies describing ancestral relationships among the Antilocapridae, Giraffidae, Cervidae, and Bovidae have each been argued as representations of the true phylogeny. Here we demonstrate that a genome-wide single nucleotide polymorphism (SNP) genotyping platform designed for one species can be used to genotype ancient DNA from an extinct species and DNA from species diverged up to 29 million years ago and that the produced genotypes can be used to resolve the phylogeny for this rapidly radiated infraorder. We used a high-throughput assay with 54,693 SNP loci developed for Bos taurus taurus to rapidly genotype 678 individuals representing 61 Pecoran species. We produced a highly resolved phylogeny for this diverse group based upon 40,843 genome-wide SNP, which is five times as many informative characters as have previously been analyzed. We also establish a method to amplify and screen genomic information from extinct species, and place Bison priscus within the Bovidae. The quality of genotype calls and the placement of samples within a well-supported phylogeny may provide an important test for validating the fidelity and integrity of ancient samples. Finally, we constructed a phylogenomic network to accurately describe the relationships between 48 cattle breeds and facilitate inferences concerning the history of domestication and breed formation.


PLOS ONE | 2009

A Validated Genome Wide Association Study to Breed Cattle Adapted to an Environment Altered by Climate Change

Ben J. Hayes; Phil J. Bowman; Amanda J. Chamberlain; K. Savin; Curt P. Van Tassell; Tad S. Sonstegard; Michael E. Goddard

Continued production of food in areas predicted to be most affected by climate change, such as dairy farming regions of Australia, will be a major challenge in coming decades. Along with rising temperatures and water shortages, scarcity of inputs such as high energy feeds is predicted. With the motivation of selecting cattle adapted to these changing environments, we conducted a genome wide association study to detect DNA markers (single nucleotide polymorphisms) associated with the sensitivity of milk production to environmental conditions. To do this we combined historical milk production and weather records with dense marker genotypes on dairy sires with many daughters milking across a wide range of production environments in Australia. Markers associated with sensitivity of milk production to feeding level and sensitivity of milk production to temperature humidity index on chromosome nine and twenty nine respectively were validated in two independent populations, one a different breed of cattle. As the extent of linkage disequilibrium across cattle breeds is limited, the underlying causative mutations have been mapped to a small genomic interval containing two promising candidate genes. The validated marker panels we have reported here will aid selection for high milk production under anticipated climate change scenarios, for example selection of sires whose daughters will be most productive at low levels of feeding.


BMC Genetics | 2008

An assessment of population structure in eight breeds of cattle using a whole genome SNP panel

Stephanie D. McKay; Robert D. Schnabel; B. Murdoch; Lakshmi K. Matukumalli; Jan Aerts; Wouter Coppieters; Denny Crews; Emmanuel Dias Neto; C. A. Gill; Chuan Gao; Hideyuki Mannen; Z. Wang; Curt P. Van Tassell; John L. Williams; Jeremy F. Taylor; Stephen S. Moore

BackgroundAnalyses of population structure and breed diversity have provided insight into the origin and evolution of cattle. Previously, these studies have used a low density of microsatellite markers, however, with the large number of single nucleotide polymorphism markers that are now available, it is possible to perform genome wide population genetic analyses in cattle. In this study, we used a high-density panel of SNP markers to examine population structure and diversity among eight cattle breeds sampled from Bos indicus and Bos taurus.ResultsTwo thousand six hundred and forty one single nucleotide polymorphisms (SNPs) spanning all of the bovine autosomal genome were genotyped in Angus, Brahman, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black, Limousin and Nelore cattle. Population structure was examined using the linkage model in the program STRUCTURE and Fst estimates were used to construct a neighbor-joining tree to represent the phylogenetic relationship among these breeds.ConclusionThe whole-genome SNP panel identified several levels of population substructure in the set of examined cattle breeds. The greatest level of genetic differentiation was detected between the Bos taurus and Bos indicus breeds. When the Bos indicus breeds were excluded from the analysis, genetic differences among beef versus dairy and European versus Asian breeds were detected among the Bos taurus breeds. Exploration of the number of SNP loci required to differentiate between breeds showed that for 100 SNP loci, individuals could only be correctly clustered into breeds 50% of the time, thus a large number of SNP markers are required to replace the 30 microsatellite markers that are currently commonly used in genetic diversity studies.


Frontiers in Genetics | 2014

Genome-wide association study and ancestral origins of the slick-hair coat in tropically adapted cattle.

Eui-Soo Kim; Robert W. Godfrey; T. A. Olson; M. C. McClure; C. C. Chase; Rita Rizzi; Ana M. Pérez O'Brien; Curt P. Van Tassell; José Fernando Garcia; Tad S. Sonstegard

The slick hair coat (SLICK) is a dominantly inherited trait typically associated with tropically adapted cattle that are from Criollo descent through Spanish colonization of cattle into the New World. The trait is of interest relative to climate change, due to its association with improved thermo-tolerance and subsequent increased productivity. Previous studies localized the SLICK locus to a 4 cM region on chromosome (BTA) 20 and identified signatures of selection in this region derived from Senepol cattle. The current study compares three slick-haired Criollo-derived breeds including Senepol, Carora, and Romosinuano and three additional slick-haired cross-bred lineages to non-slick ancestral breeds. Genome-wide association (GWA), haplotype analysis, signatures of selection, runs of homozygosity (ROH), and identity by state (IBS) calculations were used to identify a 0.8 Mb (37.7–38.5 Mb) consensus region for the SLICK locus on BTA20 in which contains SKP2 and SPEF2 as possible candidate genes. Three specific haplotype patterns are identified in slick individuals, all with zero frequency in non-slick individuals. Admixture analysis identified common genetic patterns between the three slick breeds at the SLICK locus. Principal component analysis (PCA) and admixture results show Senepol and Romosinuano sharing a higher degree of genetic similarity to one another with a much lesser degree of similarity to Carora. Variation in GWA, haplotype analysis, and IBS calculations with accompanying population structure information supports potentially two mutations, one common to Senepol and Romosinuano and another in Carora, effecting genes contained within our refined location for the SLICK locus.


Animal Biotechnology | 2010

Characterization of DGAT1 allelic effects in a sample of North American Holstein cattle.

M. V. G. B. Silva; Tad S. Sonstegard; R. M. Thallman; E.E. Connor; Robert D. Schnabel; Curt P. Van Tassell

A putative causative mutation underlying a QTL was identified as a lysine to alanine non-conservative substitution at amino acid 232 of the gene encoding the acylCoA:diacylglycerol acyltransferase (DGAT1) protein. Our goal was to characterize the allelic substitution effects of this DGAT1 mutation in a large sample of Holstein bulls from North America. Statistically significant effects were identified for all of the milk production traits and somatic cell scores. Estimated average effects of substituting the lysine allele for the alanine variant on Holstein bull daughter yield deviations were −81 kg, 3.7 kg, −1.1 kg, 0.063%, 0.012%, and −0.023 units for milk yield, fat yield, protein yield, fat component, protein component, and SCS, respectively. These estimates were largely in agreement with previous studies; however, the magnitudes of the estimates were much smaller in this study. Impacts on economic indices for net merit, cheese merit, and fluid merit were modest. Because of the strong antagonism between fat and protein yield and how those traits influence economic indices, selection for DGAT1 genotypes will likely not find widespread application in the U.S.


Journal of Dairy Science | 2016

Identification of a nonsense mutation in APAF1 that is likely causal for a decrease in reproductive efficiency in Holstein dairy cattle

Heather A. Adams; Tad S. Sonstegard; P.M. VanRaden; D.J. Null; Curt P. Van Tassell; Denis M. Larkin; Harris A. Lewin

The HH1 haplotype on chromosome 5 is associated with a reduced conception rate and a deficit of homozygotes at the population level in Holstein cattle. The source HH1 haplotype was traced to the bull Pawnee Farm Arlinda Chief (Chief), who was born in 1962 and has sired more than 16,000 daughters. We identified a nonsense mutation in APAF1 (apoptotic protease activating factor 1;APAF1 p.Q579X) within HH1 using whole-genome resequencing of Chief and 3 of his sons. This mutation is predicted to truncate 670 AA (53.7%) of the encoded APAF1 protein that contains a WD40 domain critical to protein-protein interactions. Initial screening revealed no homozygous individuals for the mutation in 758 animals previously genotyped, whereas all 497 HH1 carriers possessed 1 copy of the mutant allele. Subsequent commercial genotyping of 246,773 Holsteins revealed 5,299 APAF1 heterozygotes and zero homozygotes for the mutation. The causative role of this mutation is also supported by functional data in mice that have demonstrated Apaf1 to be an essential molecule in the cytochrome-c-mediated apoptotic cascade and directly implicated in developmental and neurodegenerative disorders. In addition, most Apaf1 homozygous knockouts die by day 16.5 of development. We thus propose that the APAF1 p.Q579X nonsense mutation is the functional equivalent of the Apaf1 knockout. This mutation has caused an estimated 525,000 spontaneous abortions worldwide over the past 35 years, accounting for approximately


PLOS ONE | 2013

Fine mapping for Weaver syndrome in Brown Swiss cattle and the identification of 41 concordant mutations across NRCAM, PNPLA8 and CTTNBP2.

Matthew W. McClure; Eui-Soo Kim; Derek M. Bickhart; D.J. Null; T.A. Cooper; J.B. Cole; G.R. Wiggans; Paolo Ajmone-Marsan; Licia Colli; E. Santus; George E. Liu; Steve Schroeder; Lakshmi K. Matukumalli; Curt P. Van Tassell; Tad S. Sonstegard

420 million in losses. With the mutation identified, selection against the deleterious allele in breeding schemes has aided in eliminating this defect from the population, reducing carrier frequency from 8% in past decades to 2% in 2015.

Collaboration


Dive into the Curt P. Van Tassell's collaboration.

Top Co-Authors

Avatar

Tad S. Sonstegard

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek M. Bickhart

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Eui-Soo Kim

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

George E. Liu

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.J. Null

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge