Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Curtis A. Thorne is active.

Publication


Featured researches published by Curtis A. Thorne.


Nature Chemical Biology | 2010

Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α

Curtis A. Thorne; Alison J. Hanson; Judsen Schneider; Emilios Tahinci; Darren Orton; Christopher S. Cselenyi; Kristin K. Jernigan; Kelly Christian Meyers; Brian I. Hang; Alex G. Waterson; Kwangho Kim; Bruce J. Melancon; Victor P. Ghidu; Gary A. Sulikowski; Bonnie LaFleur; Adrian Salic; Laura A. Lee; David M. Miller; Ethan Lee

Wnt/β-catenin signaling is critically involved in metazoan development, stem cell maintenance and human disease. Using Xenopus laevis egg extract to screen for compounds that both stabilize Axin and promote β-catenin turnover, we identified an FDA-approved drug, pyrvinium, as a potent inhibitor of Wnt signaling (EC(50) of ∼10 nM). We show pyrvinium binds all casein kinase 1 (CK1) family members in vitro at low nanomolar concentrations and pyrvinium selectively potentiates casein kinase 1α (CK1α) kinase activity. CK1α knockdown abrogates the effects of pyrvinium on the Wnt pathway. In addition to its effects on Axin and β-catenin levels, pyrvinium promotes degradation of Pygopus, a Wnt transcriptional component. Pyrvinium treatment of colon cancer cells with mutation of the gene for adenomatous polyposis coli (APC) or β-catenin inhibits both Wnt signaling and proliferation. Our findings reveal allosteric activation of CK1α as an effective mechanism to inhibit Wnt signaling and highlight a new strategy for targeted therapeutics directed against the Wnt pathway.


Growth Factors Journal | 2013

The way Wnt works: Components and mechanism

Kenyi Saito-Diaz; Tony W. Chen; Xiaoxi Wang; Curtis A. Thorne; Heather A. Wallace; Andrea Page-McCaw; Ethan Lee

The canonical Wnt/β-catenin pathway is an ancient and evolutionarily conserved signaling pathway that is required for the proper development of all metazoans, from the basal demosponge Amphimedon queenslandica to humans. Misregulation of Wnt signaling is implicated in many human diseases, making this pathway an intense area of research in industry as well as academia. In this review, we explore our current understanding of the molecular steps involved in the transduction of a Wnt signal. We will focus on how the critical Wnt pathway component, β-catenin, is in a “futile cycle” of constant synthesis and degradation and how this cycle is disrupted upon pathway activation. We describe the role of the Wnt pathway in major human cancers and in the control of stem cell self-renewal in the developing organism and in adults. Finally, we describe well-accepted criteria that have been proposed as evidence for the involvement of a molecule in regulating the canonical Wnt pathway.


PLOS ONE | 2010

Pyrvinium, a Potent Small Molecule Wnt Inhibitor, Promotes Wound Repair and Post-MI Cardiac Remodeling

Sarika Saraswati; Maria P. Alfaro; Curtis A. Thorne; James B. Atkinson; Ethan Lee; Pampee P. Young

Wnt signaling plays an important role in developmental and stem cell biology. To test the hypothesis that temporary inhibition of Wnt signaling will enhance granulation tissue and promote angiogenesis in tissue repair, we employed a recently characterized small molecule Wnt inhibitor. Pyrvinium is an FDA-approved drug that we identified as a Wnt inhibitor in a chemical screen for small molecules that stabilize β-catenin and inhibit Axin degradation. Our subsequent characterization of pyrvinium has revealed that its critical cellular target in the Wnt pathway is Casein Kinase 1α. Daily administration of pyrvinium directly into polyvinyl alcohol (PVA) sponges implanted subcutaneously in mice generated better organized and vascularized granulation tissue; this compound also increased the proliferative index of the tissue within the sponges. To evaluate its effect in myocardial repair, we induced a myocardial infarction (MI) by coronary artery ligation and administered a single intramyocardial dose of pyrvinium. Mice were evaluated by echocardiography at 7 and 30 days post-MI and treatment; post mortem hearts were evaluated by histology at 30 days. Pyrvinium reduced adverse cardiac remodeling demonstrated by decreased left ventricular internal diameter in diastole (LVIDD) as compared to a control compound. Increased Ki-67+ cells were observed in peri-infarct and distal myocardium of pyrvinium-treated animals. These results need to be further followed-up to determine if therapeutic inhibition of canonical Wnt may avert adverse remodeling after ischemic injury and its impact on myocardial repair and regeneration.


Journal of Biological Chemistry | 2010

sFRP2 suppression of bone morphogenic protein (BMP) and Wnt signaling mediates mesenchymal stem cell (MSC) self-renewal promoting engraftment and myocardial repair.

Maria P. Alfaro; Alicia Vincent; Sarika Saraswati; Curtis A. Thorne; Charles C. Hong; Ethan Lee; Pampee P. Young

Transplantation of mesenchymal stem cells (MSCs) is a promising therapy for ischemic injury; however, inadequate survival of implanted cells in host tissue is a substantial impediment in the progress of cellular therapy. Secreted Frizzled-related protein 2 (sFRP2) has recently been highlighted as a key mediator of MSC-driven myocardial and wound repair. Notably, sFRP2 mediates significant enhancement of MSC engraftment in vivo. We hypothesized that sFRP2 improves MSC engraftment by modulating self-renewal through increasing stem cell survival and by inhibiting differentiation. In previous studies we demonstrated that sFRP2-expressing MSCs exhibited an increased proliferation rate. In the current study, we show that sFRP2 also decreased MSC apoptosis and inhibited both osteogenic and chondrogenic lineage commitment. sFRP2 activity occurred through the inhibition of both Wnt and bone morphogenic protein (BMP) signaling pathways. sFRP2-mediated inhibition of BMP signaling, as assessed by levels of pSMAD 1/5/8, was independent of its effects on the Wnt pathway. We further hypothesized that sFRP2 inhibition of MSC lineage commitment may reduce heterotopic osteogenic differentiation within the injured myocardium, a reported adverse side effect. Indeed, we found that sFRP2-MSC-treated hearts and wound tissue had less ectopic calcification. This work provides important new insight into the mechanisms by which sFRP2 increases MSC self-renewal leading to superior tissue engraftment and enhanced wound healing.


Development | 2007

Lrp6 is required for convergent extension during Xenopus gastrulation

Emilios Tahinci; Curtis A. Thorne; Jeffrey L. Franklin; Adrian Salic; Kelly M. Christian; Laura A. Lee; Robert J. Coffey; Ethan Lee

Wnt signaling regulates β-catenin-mediated gene transcription and planar cell polarity (PCP). The Wnt co-receptor, Lrp6, is required for signaling along the β-catenin arm. We show that Lrp6 downregulation (by morpholino injection) or overexpression in Xenopus embryos disrupts convergent extension, a hallmark feature of Wnt/PCP components. In embryos with decreased Lrp6 levels, cells of the dorsal marginal zone (DMZ), which undergoes extensive cellular rearrangements during gastrulation, exhibit decreased length:width ratios, decreased migration, and increased numbers of transient cytoplasmic protrusions. We show that Lrp6 opposes Wnt11 activity and localizes to the posterior edge of migrating DMZ cells and that Lrp6 downregulation enhances cortical and nuclear localization of Dsh and phospho-JNK, respectively. Taken together, these data suggest that Lrp6 inhibits Wnt/PCP signaling. Finally, we identify the region of the Lrp6 protein with Wnt/PCP activity to a stretch of 36 amino acids, distinct from regions required for Wnt/β-catenin signaling. We propose a model in which Lrp6 plays a critical role in the switch from Wnt/PCP to Wnt/β-catenin signaling.


Science Signaling | 2010

Gbetagamma activates GSK3 to promote LRP6-mediated beta-catenin transcriptional activity.

Kristin K. Jernigan; Christopher S. Cselenyi; Curtis A. Thorne; Alison J. Hanson; Emilios Tahinci; Hajicek N; William M. Oldham; Laura A. Lee; Heidi E. Hamm; Hepler; Tohru Kozasa; Maurine E. Linder; Ethan Lee

A Xenopus reconstitution system reveals that the G protein Gβγ subunit contributes to β-catenin stabilization. Gβγ for β-Catenin Stability G proteins influence the Wnt–β-catenin pathway, which regulates various developmental processes; aberrant activity is associated with some cancers. The ligand Wnt interacts with a receptor complex that includes the seven-transmembrane protein Frizzled and the single-transmembrane protein LRP6 to activate the transcriptional regulatory activity of β-catenin. By screening the activity of purified G protein subunits in a Xenopus egg extract system, Jernigan et al. found that, in addition to a subset of Gα subunits, the Gβγ subunit also stabilized β-catenin. Various biochemical analyses, including analysis of transfected mammalian cells and in vitro assays, along with the use of a Gβγ-selective inhibitor, suggested that Gβγ recruited the kinase GSK3 to the membrane. After membrane recruitment, GSK3 phosphorylated LRP6, which then inhibited the β-catenin degradation complex, allowing β-catenin to translocate to the nucleus and activate transcription. Additionally, the Gβγ inhibitor prevented axis duplication of Xenopus embryos under conditions of excess LRP6 activity, thus verifying in vivo a role for Gβγ in this pathway. The Gβγ inhibitor failed to block Wnt-mediated activation of β-catenin, which suggests that a receptor other than Frizzled may activate the G protein that contributes to β-catenin signaling. Evidence from Drosophila and cultured cell studies supports a role for heterotrimeric guanosine triphosphate–binding proteins (G proteins) in Wnt signaling. Wnt inhibits the degradation of the transcriptional regulator β-catenin. We screened the α and βγ subunits of major families of G proteins in a Xenopus egg extract system that reconstitutes β-catenin degradation. We found that Gαo, Gαq, Gαi2, and Gβγ inhibited β-catenin degradation. Gβ1γ2 promoted the phosphorylation and activation of the Wnt co-receptor low-density lipoprotein receptor–related protein 6 (LRP6) by recruiting glycogen synthase kinase 3 (GSK3) to the membrane and enhancing its kinase activity. In both a reporter gene assay and an in vivo assay, c-βARK (C-terminal domain of β-adrenergic receptor kinase), an inhibitor of Gβγ, blocked LRP6 activity. Several components of the Wnt–β-catenin pathway formed a complex: Gβ1γ2, LRP6, GSK3, axin, and dishevelled. We propose that free Gβγ and Gα subunits, released from activated G proteins, act cooperatively to inhibit β-catenin degradation and activate β-catenin–mediated transcription.


Cell Reports | 2013

Selective Small Molecule Targeting β-Catenin Function Discovered by In Vivo Chemical Genetic Screen

Jijun Hao; Ada Ao; Li Zhou; Clare Murphy; Audrey Y. Frist; Jessica J. Keel; Curtis A. Thorne; Kwangho Kim; Ethan Lee; Charles C. Hong

The canonical Wnt signaling pathway, mediated by the transcription factor β-catenin, plays critical roles in embryonic development and represents an important therapeutic target. In a zebrafish-based in vivo screen for small molecules that specifically perturb embryonic dorsoventral patterning, we discovered a compound named windorphen that selectively blocks the Wnt signal required for ventral development. Windorphen exhibits remarkable specificity toward β-catenin-1 function, indicating that the two β-catenin isoforms found in zebrafish are not functionally redundant. We show that windorphen is a selective inhibitor of p300 histone acetyltransferase, a coactivator that associates with β-catenin. Finally, windorphen robustly and selectively kills cancer cells that harbor Wnt-activating mutations, supporting the therapeutic potential of this Wnt inhibitor class.


Genetics | 2016

Wnt/Wingless Pathway Activation Is Promoted by a Critical Threshold of Axin Maintained by the Tumor Suppressor APC and the ADP-Ribose Polymerase Tankyrase

Zhenghan Wang; Ofelia Tacchelly-Benites; Eungi Yang; Curtis A. Thorne; Hisashi Nojima; Ethan Lee; Yashi Ahmed

Wnt/β-catenin signal transduction directs metazoan development and is deregulated in numerous human congenital disorders and cancers. In the absence of Wnt stimulation, a multiprotein “destruction complex,” assembled by the scaffold protein Axin, targets the key transcriptional activator β-catenin for proteolysis. Axin is maintained at very low levels that limit destruction complex activity, a property that is currently being exploited in the development of novel therapeutics for Wnt-driven cancers. Here, we use an in vivo approach in Drosophila to determine how tightly basal Axin levels must be controlled for Wnt/Wingless pathway activation, and how Axin stability is regulated. We find that for nearly all Wingless-driven developmental processes, a three- to fourfold increase in Axin is insufficient to inhibit signaling, setting a lower-limit for the threshold level of Axin in the majority of in vivo contexts. Further, we find that both the tumor suppressor adenomatous polyposis coli (APC) and the ADP-ribose polymerase Tankyrase (Tnks) have evolutionarily conserved roles in maintaining basal Axin levels below this in vivo threshold, and we define separable domains in Axin that are important for APC- or Tnks-dependent destabilization. Together, these findings reveal that both APC and Tnks maintain basal Axin levels below a critical in vivo threshold to promote robust pathway activation following Wnt stimulation.


Journal of Biomolecular Screening | 2011

A Biochemical Screen for Identification of Small-Molecule Regulators of the Wnt Pathway Using Xenopus Egg Extracts

Curtis A. Thorne; Bonnie LaFleur; Michelle Lewis; Alison J. Hanson; Kristin K. Jernigan; David Weaver; Kari A. Huppert; Tony W. Chen; Chonlarat Wichaidit; Christopher S. Cselenyi; Emilios Tahinci; Kelly Christian Meyers; Emily Waskow; Darren Orton; Adrian Salic; Laura A. Lee; David J. Robbins; Stacey S. Huppert; Ethan Lee

Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the stability of two key components of the Wnt pathway (β-catenin and Axin) in opposing fashion. We have now fused β-catenin and Axin to firefly and Renilla luciferase, respectively, and demonstrate that the fusion proteins behave similarly as their wild-type counterparts. Using this dual luciferase readout, we adapted the Xenopus extracts system for high-throughput screening. Results from these screens demonstrate signal distribution curves that reflect the complexity of the library screened. Of several compounds identified as cytoplasmic modulators of the Wnt pathway, one was further validated as a bona fide inhibitor of the Wnt pathway in cultured mammalian cells and Xenopus embryos. We show that other embryonic pathways may be amendable to screening for inhibitors/modulators in Xenopus egg extracts.


Cell Metabolism | 2017

FGF21 Is an Exocrine Pancreas Secretagogue

Katie C. Coate; Genaro Hernandez; Curtis A. Thorne; Shengyi Sun; Thao D.V. Le; Kevin Vale; Steven A. Kliewer; David J. Mangelsdorf

The metabolic stress hormone FGF21 is highly expressed in exocrine pancreas, where its levels are increased by refeeding and chemically induced pancreatitis. However, its function in the exocrine pancreas remains unknown. Here, we show that FGF21 stimulates digestive enzyme secretion from pancreatic acinar cells through an autocrine/paracrine mechanism that requires signaling through a tyrosine kinase receptor complex composed of an FGF receptor and β-Klotho. Mice lacking FGF21 accumulate zymogen granules and are susceptible to pancreatic ER stress, an effect that is reversed by administration of recombinant FGF21. Mice carrying an acinar cell-specific deletion of β-Klotho also accumulate zymogen granules but are refractory to FGF21-stimulated secretion. Like the classical post-prandial secretagogue, cholecystokinin (CCK), FGF21 triggers intracellular calcium release via PLC-IP3R signaling. However, unlike CCK, FGF21 does not induce protein synthesis, thereby preventing protein accumulation. Thus, pancreatic FGF21 is a digestive enzyme secretagogue whose physiologic function is to maintain acinar cell proteostasis.

Collaboration


Dive into the Curtis A. Thorne's collaboration.

Top Co-Authors

Avatar

Ethan Lee

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar

Laura A. Lee

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Emilios Tahinci

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alison J. Hanson

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Christopher S. Cselenyi

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kelly Christian Meyers

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kristin K. Jernigan

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge