Curtis Dobrowolski
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Curtis Dobrowolski.
PLOS Pathogens | 2013
Uri R. Mbonye; Giridharan Gokulrangan; Manish Datt; Curtis Dobrowolski; Maxwell Cooper; Mark R. Chance; Jonathan Karn
The HIV transactivator protein, Tat, enhances HIV transcription by recruiting P-TEFb from the inactive 7SK snRNP complex and directing it to proviral elongation complexes. To test the hypothesis that T-cell receptor (TCR) signaling induces critical post-translational modifications leading to enhanced interactions between P-TEFb and Tat, we employed affinity purification–tandem mass spectrometry to analyze P-TEFb. TCR or phorbal ester (PMA) signaling strongly induced phosphorylation of the CDK9 kinase at Ser175. Molecular modeling studies based on the Tat/P-TEFb X-ray structure suggested that pSer175 strengthens the intermolecular interactions between CDK9 and Tat. Mutations in Ser175 confirm that this residue could mediate critical interactions with Tat and with the bromodomain protein BRD4. The S175A mutation reduced CDK9 interactions with Tat by an average of 1.7-fold, but also completely blocked CDK9 association with BRD4. The phosphomimetic S175D mutation modestly enhanced Tat association with CDK9 while causing a 2-fold disruption in BRD4 association with CDK9. Since BRD4 is unable to compete for binding to CDK9 carrying S175A, expression of CDK9 carrying the S175A mutation in latently infected cells resulted in a robust Tat-dependent reactivation of the provirus. Similarly, the stable knockdown of BRD4 led to a strong enhancement of proviral expression. Immunoprecipitation experiments show that CDK9 phosphorylated at Ser175 is excluded from the 7SK RNP complex. Immunofluorescence and flow cytometry studies carried out using a phospho-Ser175-specific antibody demonstrated that Ser175 phosphorylation occurs during TCR activation of primary resting memory CD4+ T cells together with upregulation of the Cyclin T1 regulatory subunit of P-TEFb, and Thr186 phosphorylation of CDK9. We conclude that the phosphorylation of CDK9 at Ser175 plays a critical role in altering the competitive binding of Tat and BRD4 to P-TEFb and provides an informative molecular marker for the identification of the transcriptionally active form of P-TEFb.
Journal of NeuroVirology | 2012
Emily S. Wires; David Alvarez; Curtis Dobrowolski; Yun Wang; Marisela Morales; Jonathan Karn; Brandon K. Harvey
Human immunodeficiency virus (HIV) primarily infects glial cells in the central nervous system (CNS). Recent evidence suggests that HIV-infected individuals who abuse drugs such as methamphetamine (METH) have higher viral loads and experience more severe neurological complications than HIV-infected individuals who do not abuse drugs. The aim of this study was to determine the effect of METH on HIV expression from the HIV long terminal repeat (LTR) promoter and on an HIV integrated provirus in microglial cells, the primary host cells for HIV in the CNS. Primary human microglial cells immortalized with SV40 T antigen (CHME-5 cells) were cotransfected with an HIV LTR reporter and the HIV Tat gene, a key regulator of viral replication and gene expression, and exposed to METH. Our results demonstrate that METH treatment induced LTR activation, an effect potentiated in the presence of Tat. We also found that METH increased the nuclear translocation of the nuclear factor kappa B (NF-κB), a key cellular transcriptional regulator of the LTR promoter, and the activity of an NF-κB-specific reporter plasmid in CHME-5 cells. The presence of a dominant-negative regulator of NF-κB blocked METH-related activation of the HIV LTR. Furthermore, treatment of HIV-latently infected CHME-5 (CHME-5/HIV) cells with METH induced HIV expression and nuclear translocation of the p65 subunit of NF-κB. These results suggest that METH can stimulate HIV gene expression in microglia cells through activation of the NF-κB signaling pathway. This mechanism may outline the initial biochemical events leading to the observed increased neurodegeneration in HIV-positive individuals who use METH.
Molecular and Cellular Biology | 2014
Julie K. Jadlowsky; Julian Y. Wong; Amy C. Graham; Curtis Dobrowolski; Renee L. Devor; Mark D. Adams; Koh Fujinaga; Jonathan Karn
ABSTRACT The role of the negative elongation factor (NELF) in maintaining HIV latency was investigated following small hairpin RNA (shRNA) knockdown of the NELF-E subunit, a condition that induced high levels of proviral transcription in latently infected Jurkat T cells. Chromatin immunoprecipitation (ChIP) assays showed that latent proviruses accumulate RNA polymerase II (RNAP II) on the 5′ long terminal repeat (LTR) but not on the 3′ LTR. NELF colocalizes with RNAP II, and its level increases following proviral induction. RNAP II pause sites on the HIV provirus were mapped to high resolution by ChIP with high-throughput sequencing (ChIP-Seq). Like cellular promoters, RNAP II accumulates at around position +30, but HIV also shows additional pausing at +90, which is immediately downstream of a transactivation response (TAR) element and other distal sites on the HIV LTR. Following NELF-E knockdown or tumor necrosis factor alpha (TNF-α) stimulation, promoter-proximal RNAP II levels increase up to 3-fold, and there is a dramatic increase in RNAP II levels within the HIV genome. These data support a kinetic model for proviral transcription based on continuous replacement of paused RNAP II during both latency and productive transcription. In contrast to most cellular genes, HIV is highly activated by the combined effects of NELF-E depletion and activation of initiation by TNF-α, suggesting that opportunities exist to selectively activate latent HIV proviruses.
Journal of Virology | 2014
Mark B. Lucera; Carisa A. Tilton; Hongxia Mao; Curtis Dobrowolski; Caroline O. Tabler; Aiman A. Haqqani; Jonathan Karn; John C. Tilton
ABSTRACT Latently infected cells remain a primary barrier to eradication of HIV-1. Over the past decade, a better understanding of the molecular mechanisms by which latency is established and maintained has led to the discovery of a number of compounds that selectively reactivate latent proviruses without inducing polyclonal T cell activation. Recently, the histone deacetylase (HDAC) inhibitor vorinostat has been demonstrated to induce HIV transcription from latently infected cells when administered to patients. While vorinostat will be given in the context of antiretroviral therapy (ART), infection of new cells by induced virus remains a clinical concern. Here, we demonstrate that vorinostat significantly increases the susceptibility of CD4+ T cells to infection by HIV in a dose- and time-dependent manner that is independent of receptor and coreceptor usage. Vorinostat does not enhance viral fusion with cells but rather enhances the kinetics and efficiency of postentry viral events, including reverse transcription, nuclear import, and integration, and enhances viral production in a spreading-infection assay. Selective inhibition of the cytoplasmic class IIb HDAC6 with tubacin recapitulated the effect of vorinostat. These findings reveal a previously unknown cytoplasmic effect of HDAC inhibitors promoting productive infection of CD4+ T cells that is distinct from their well-characterized effects on nuclear histone acetylation and long-terminal-repeat (LTR) transcription. Our results indicate that careful monitoring of patients and ART intensification are warranted during vorinostat treatment and indicate that HDAC inhibitors that selectively target nuclear class I HDACs could reactivate latent HIV without increasing the susceptibility of uninfected cells to HIV. IMPORTANCE HDAC inhibitors, particularly vorinostat, are currently being investigated clinically as part of a “shock-and-kill” strategy to purge latent reservoirs of HIV. We demonstrate here that vorinostat increases the susceptibility of uninfected CD4+ T cells to infection with HIV, raising clinical concerns that vorinostat may reseed the viral reservoirs it is meant to purge, particularly under conditions of suboptimal drug exposure. We demonstrate that vorinostat acts following viral fusion and enhances the kinetics and efficiency of reverse transcription, nuclear import, and integration. The effect of vorinostat was recapitulated using the cytoplasmic histone deacetylase 6 (HDAC6) inhibitor tubacin, revealing a novel and previously unknown cytoplasmic mechanism of HDAC inhibitors on HIV replication that is distinct from their well-characterized effects of long-terminal-repeat (LTR)-driven gene expression. Moreover, our results suggest that treatment of patients with class I-specific HDAC inhibitors could induce latent viruses without increasing the susceptibility of uninfected cells to HIV.
Virology | 2015
Biswajit Das; Curtis Dobrowolski; Abdel Malek Shahir; Zhimin Feng; Xiaolan Yu; Jinfeng Sha; Nabil F. Bissada; Aaron Weinberg; Jonathan Karn; Fengchun Ye
HIV patients with severe periodontitis have high levels of residual virus in their saliva and plasma despite effective therapy (HAART). Multiple short chain fatty acids (SCFAs) from periodontal pathogens reactivate HIV-1 in both Jurkat and primary T-cell models of latency. SCFAs not only activate positive transcription elongation factor b (P-TEFb), which is an essential cellular cofactor for Tat, but can also reverse chromatin blocks by inducing histone modifications. SCFAs simultaneously increase histone acetylation by inhibiting class-1/2 histone deacetylases (HDACs) and decrease repressive histone tri-methylation at the proviral LTR by downregulating expression of the class-3 HDAC sirtuin-1 (SIRT1), and the histone methyltransferases enhancer of Zeste homolog 2 (EZH2) and suppressor of variegation 3-9 homolog 1 (SUV39H1). Our findings provide a mechanistic link between periodontal disease and enhanced HIV-1 replication, and suggest that treatment of periodontal disease, or blocking the activities of SCFAs, will have a therapeutic benefit for HIV patients.
Mbio | 2017
Kien Nguyen; Biswajit Das; Curtis Dobrowolski; Jonathan Karn
ABSTRACT We showed previously that the histone lysine methyltransferase (HKMT) H3K27me3 (EZH2) is the catalytic subunit of Polycomb repressive complex 2 (PRC2) and is required for the maintenance of HIV-1 latency in Jurkat T cells. Here we show, by using chromatin immunoprecipitation experiments, that both PRC2 and euchromatic histone-lysine N-methyltransferase 2 (EHMT2), the G9a H3K9me2-3 methyltransferase, are highly enriched at the proviral 5′ long terminal repeat (LTR) and rapidly displaced upon proviral reactivation. Clustered regularly interspaced short palindromic repeat(s) (CRISPR)-mediated knockout of EZH2 caused depletion of both EZH2 and EHMT2, but CRISPR-mediated knockout of EHMT2 was selective for EHMT2, consistent with the failure of EHMT2 knockouts to induce latent proviruses in this system. Either (i) knockout of methyltransferase by short hairpin RNA in Jurkat T cells prior to HIV-1 infection or (ii) inhibition of the enzymes with drugs significantly reduced the levels of the resulting silenced viruses, demonstrating that both enzymes are required to establish latency. To our surprise, inhibition of EZH2 (by GSK-343 or EPZ-6438) or inhibition of EHMT2 (by UNC-0638) in the Th17 primary cell model of HIV latency or resting memory T cells isolated from HIV-1-infected patients receiving highly active antiretroviral therapy, was sufficient to induce the reactivation of latent proviruses. The methyltransferase inhibitors showed synergy with interleukin-15 and suberanilohydroxamic acid. We conclude that both PRC2 and EHMT2 are required for the establishment and maintenance of HIV-1 proviral silencing in primary cells. Furthermore, EZH2 inhibitors such as GSK-343 and EPZ-6438 and the EHMT2 inhibitor UNC-0638 are strong candidates for use as latency-reversing agents in clinical studies. IMPORTANCE Highly active antiretroviral therapy (HAART) reduces the circulating virus to undetectable levels. Although patients adhering to the HAART regimen have minimal viremia, HIV persists because of the existence of latent but replication-competent proviruses in a very small population of resting memory CD4+ T cells (~1 in 106 cells). Latency remains the major obstacle to a functional cure for HIV infection, since the persistent reservoir almost invariably rebounds within 2 to 8 weeks when HAART is interrupted. In latently infected cells, the HIV genome is stably integrated into the host chromosome but transcriptionally repressed because of epigenetic silencing mechanisms. We demonstrate here that multiple histone lysine methyltransferases play a critical role in both the establishment and maintenance of proviral silencing in cells obtained from well-suppressed patients. Drugs that inhibit these enzymes are available from oncology applications and may find a use in reversing latency as part of a reservoir reduction strategy. Highly active antiretroviral therapy (HAART) reduces the circulating virus to undetectable levels. Although patients adhering to the HAART regimen have minimal viremia, HIV persists because of the existence of latent but replication-competent proviruses in a very small population of resting memory CD4+ T cells (~1 in 106 cells). Latency remains the major obstacle to a functional cure for HIV infection, since the persistent reservoir almost invariably rebounds within 2 to 8 weeks when HAART is interrupted. In latently infected cells, the HIV genome is stably integrated into the host chromosome but transcriptionally repressed because of epigenetic silencing mechanisms. We demonstrate here that multiple histone lysine methyltransferases play a critical role in both the establishment and maintenance of proviral silencing in cells obtained from well-suppressed patients. Drugs that inhibit these enzymes are available from oncology applications and may find a use in reversing latency as part of a reservoir reduction strategy.
Retrovirology | 2017
David Alvarez-Carbonell; Yoelvis Garcia-Mesa; Stephanie Milne; Biswajit Das; Curtis Dobrowolski; Roxana E. Rojas; Jonathan Karn
BackgroundMultiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. We hypothesized that TLR receptor mediated responses to inflammatory conditions by microglial cells in the central nervous system (CNS) are able to induce latent HIV proviruses, and contribute to the etiology of HIV-associated neurocognitive disorders.ResultsNewly developed human microglial cell lines (hµglia), obtained by immortalizing human primary microglia with simian virus-40 (SV40) large T antigen and the human telomerase reverse transcriptase, were used to generate latently infected cells using a single-round HIV virus carrying a green fluorescence protein reporter (hµglia/HIV, clones HC01 and HC69). Treatment of these cells with a panel of TLR ligands showed surprisingly that two potent TLR3 agonists, poly (I:C) and bacterial ribosomal RNA potently reactivated HIV in hμglia/HIV cells. LPS (TLR4 agonist), flagellin (TLR5 agonist), and FSL-1 (TLR6 agonist) reactivated HIV to a lesser extent, while Pam3CSK4 (TLR2/1 agonist) and HKLM (TLR2 agonist) only weakly reversed HIV latency in these cells. While agonists for TLR2/1, 4, 5 and 6 reactivated HIV through transient NF-κB induction, poly (I:C), the TLR3 agonist, did not activate NF-κB, and instead induced the virus by a previously unreported mechanism mediated by IRF3. The selective induction of IRF3 by poly (I:C) was confirmed by chromatin immunoprecipitation (ChIP) analysis. In comparison, in latently infected rat-derived microglial cells (hT-CHME-5/HIV, clone HC14), poly (I:C), LPS and flagellin were only partially active. The TLR response profile in human microglial cells is also distinct from that shown by latently infected monocyte cell lines (THP-1/HIV, clone HA3, U937/HIV, clone HUC5, and SC/HIV, clone HSCC4), where TLR2/1, 4, 5, 6 or 8, but not for TLR3, 7 or 9, reactivated HIV.ConclusionsTLR signaling, in particular TLR3 activation, can efficiently reactivate HIV transcription in infected microglia, but not in monocytes or T cells. The unique response profile of microglial cells to TLR3 is fundamental to understanding how the virus responds to continuous microbial exposure, especially during inflammatory episodes, that characterizes HIV infection in the CNS.
Scientific Reports | 2016
Qing Li; Ahmad F. Karim; Xuedong Ding; Biswajit Das; Curtis Dobrowolski; Richard M. Gibson; Miguel E. Quiñones-Mateu; Jonathan Karn; Roxana E. Rojas
Chemical regulation of macrophage function is one key strategy for developing host-directed adjuvant therapies for tuberculosis (TB). A critical step to develop these therapies is the identification and characterization of specific macrophage molecules and pathways with a high potential to serve as drug targets. Using a barcoded lentivirus-based pooled short-hairpin RNA (shRNA) library combined with next generation sequencing, we identified 205 silenced host genes highly enriched in mycobacteria-resistant macrophages. Twenty-one of these “hits” belonged to the oxidoreductase functional category. NAD(P)H:quinone oxidoreductase 1 (NQO1) was the top oxidoreductase “hit”. NQO1 expression was increased after mycobacterial infection, and NQO1 knockdown increased macrophage differentiation, NF-κB activation, and the secretion of pro-inflammatory cytokines TNF-α and IL-1β in response to infection. This suggests that mycobacteria hijacks NQO1 to down-regulate pro-inflammatory and anti-bacterial functions. The competitive inhibitor of NQO1 dicoumarol synergized with rifampin to promote intracellular killing of mycobacteria. Thus, NQO1 is a new host target in mycobacterial infection that could potentially be exploited to increase antibiotic efficacy in vivo. Our findings also suggest that pooled shRNA libraries could be valuable tools for genome-wide screening in the search for novel druggable host targets for adjunctive TB therapies.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Biswajit Das; Curtis Dobrowolski; Benjamin G. Luttge; Saba Valadkhan; Nicolas Chomont; Rowena Johnston; Peter Bacchetti; Monica Gandhi; Steven G. Deeks; Eileen Scully; Jonathan Karn
Significance The molecular mechanisms leading to the creation and maintenance of the latent HIV reservoir remain incompletely understood. Unbiased shRNA screens showed that the estrogen receptor acts as a potent repressor of proviral reactivation in T cells. Antagonists of ESR-1 activate latent HIV-1 proviruses while agonists, including β-estradiol, potently block HIV reactivation. Using a well-matched set of male and female donors, we found that ESR-1 plays an important role in regulating HIV transcription in both sexes. However, women are much more responsive to estrogen and appear to harbor smaller inducible RNA reservoirs. Accounting for the impact of estrogen on HIV viral reservoirs will therefore be critical for devising curative therapies for women, a group representing 51% of global HIV infections. Unbiased shRNA library screens revealed that the estrogen receptor-1 (ESR-1) is a key factor regulating HIV-1 latency. In both Jurkat T cells and a Th17 primary cell model for HIV-1 latency, selective estrogen receptor modulators (SERMs, i.e., fulvestrant, raloxifene, and tamoxifen) are weak proviral activators and sensitize cells to latency-reversing agents (LRAs) including low doses of TNF-α (an NF-κB inducer), the histone deacetylase inhibitor vorinostat (soruberoylanilide hydroxamic acid, SAHA), and IL-15. To probe the physiologic relevance of these observations, leukapheresis samples from a cohort of 12 well-matched reproductive-age women and men on fully suppressive antiretroviral therapy were evaluated by an assay measuring the production of spliced envelope (env) mRNA (the EDITS assay) by next-generation sequencing. The cells were activated by T cell receptor (TCR) stimulation, IL-15, or SAHA in the presence of either β-estradiol or an SERM. β-Estradiol potently inhibited TCR activation of HIV-1 transcription, while SERMs enhanced the activity of most LRAs. Although both sexes responded to SERMs and β-estradiol, females showed much higher levels of inhibition in response to the hormone and higher reactivity in response to ESR-1 modulators than males. Importantly, the total inducible RNA reservoir, as measured by the EDITS assay, was significantly smaller in the women than in the men. We conclude that concurrent exposure to estrogen is likely to limit the efficacy of viral emergence from latency and that ESR-1 is a pharmacologically attractive target that can be exploited in the design of therapeutic strategies for latency reversal.
Journal of Neuroimmune Pharmacology | 2018
David Alvarez-Carbonell; Fengchun Ye; Nirmala Ramanath; Curtis Dobrowolski; Jonathan Karn
We have developed models of HIV latency using microglia derived from adult human patient brain cortex and transformed with the SV40 T large and hTERT antigens. Latent clones infected by HIV reporter viruses display high levels of spontaneous HIV reactivation in culture. BrainPhys, a medium highly representative of the CNS extracellular environment, containing low glucose and 1% FBS, reduced, but did not prevent, HIV reactivation. We hypothesized that spontaneous HIV reactivation in culture was due to the expression of pro-inflammatory genes, such as TNF-α, taking place in the absence of the natural inhibitory signals from astrocytes and neurons. Indeed, expression and secretion of TNF-α is strongly reduced in HIV-latently infected microglia compared to the subset of cells that have undergone spontaneous HIV reactivation. Whereas inhibitors of NF-κB or of macrophage activation only had a short-term silencing effect, addition of dexamethasone (DEXA), a glucocorticoid receptor (GR) agonist and mediator of anti-inflammation, silenced the HIV provirus in a long-term, and shRNA-mediated knock-down of GR activated HIV. DEXA also decreased secretion of a number of cytokines, including TNF-α. Chromatin immunoprecipitation analysis revealed that DEXA strongly increased GR occupancy at the HIV promoter, and reduced histone 3 acetylated levels. Moreover, TNF-α expression inhibitors in combination with DEXA induced further HIV silencing and increased the histone 3 lysine 27 tri-methylated epigenetic mark of repression at the HIV promoter region. We conclude that GR is a critical repressor of HIV transcription in microglia, and a novel potential pharmacological target to restrict HIV expression in the CNS.