Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Curtis J. Hedman is active.

Publication


Featured researches published by Curtis J. Hedman.


Chemosphere | 2013

Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern

Benjamin D. Blair; Jordan Crago; Curtis J. Hedman; Rebecca Klaper

The monitoring of pharmaceuticals and personal care products (PPCPs) has focused on the distribution in rivers and small lakes, but data regarding their occurrence and effects in large lake systems, such as the Great Lakes, are sparse. Wastewater treatment processes have not been optimized to remove influent PPCPs and are a major source of PPCPs in the environment. Furthermore, PPCPs are not currently regulated in wastewater effluent. In this experiment we evaluated the concentration, and corresponding risk, of PPCPs from a wastewater effluent source at varying distances in Lake Michigan. Fifty-four PPCPs and hormones were assessed on six different dates over a two-year period from surface water and sediment samples up to 3.2 km from a wastewater treatment plant and at two sites within a harbor. Thirty-two PPCPs were detected in Lake Michigan and 30 were detected in the sediment, with numerous PPCPs being detected up to 3.2 km away from the shoreline. The most frequently detected PPCPs in Lake Michigan were metformin, caffeine, sulfamethoxazole, and triclosan. To determine the ecological risk, the maximum measured environmental concentrations were compared to the predicted no-effect concentration and 14 PPCPs were found to be of medium or high ecological risk. The environmental risk of PPCPs in large lake systems, such as the Great Lakes, has been questioned due to high dilution; however, the concentrations found in this study, and their corresponding risk quotient, indicate a significant threat by PPCPs to the health of the Great Lakes, particularly near shore organisms.


Environmental Toxicology and Chemistry | 2012

Effects of progesterone on reproduction and embryonic development in the fathead minnow (Pimephales promelas)

Zachary A. DeQuattro; Dagmara S. Antkiewicz; Erica J. Lundgren; Curtis J. Hedman; Jocelyn D.C. Hemming; Terence P. Barry

High concentrations (375 ng/L) of the steroid hormone progesterone (P4) were measured in snowmelt runoff associated with large livestock-feeding operations in Wisconsin. To gain insight into the potential endocrine-disrupting effects of P4 in fish, experiments were conducted to evaluate the effects of short-term exposure to environmentally relevant concentrations of P4 on reproduction and embryonic development in the fathead minnow (Pimephales promelas). For the reproduction assay, groups of reproductively mature fish were exposed for 21 d to nominal concentrations of 0, 10, 100, and 1,000 ng/L P4 in a flow-through system, and various key reproductive endpoints (e.g., egg number, fertilization success) were quantified throughout the exposure period. The embryonic development assay consisted of incubating fathead minnow eggs in static culture to quantify the effects of P4 on early development and hatching success. Progesterone caused dose-dependent decreases in fecundity and fertility and significantly reduced gonadosomatic index and vitellogenin gene expression in females. There were no effects of P4 on early embryonic development or hatching success. Progesterone may be a significant endocrine-disrupting chemical in fish.


Science of The Total Environment | 2013

Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater

Benjamin D. Blair; Jordan Crago; Curtis J. Hedman; Ronan J.F. Treguer; Christopher Magruder; L. Scott Royer; Rebecca Klaper

Current wastewater treatment processes are insufficient at removing many pharmaceutical and personal care products (PPCPs) from wastewater and it is necessary to identify the chemical characteristics that determine their fate. Models that predict the fate of various chemicals lack verification using in situ data, particularly for PPCPs. BIOWIN4 is a quantitative structure-activity relationship (QSAR) model that has been proposed to estimate the removal of PPCPs from wastewater, but data verifying the accuracy of its predictions is limited. In this study, the in situ soluble and suspended solid concentrations were assessed from raw influent, primary effluent, secondary effluent, and final effluent for 54 PPCPs and hormones over six dates. When assessing the removal efficiency across the different stages of the WWTP, the majority of the removal occurred across the secondary treatment process for the majority of the compounds. The primary treatment and disinfection process had limited impacts on the removal of most PPCPs. Sorption to solids was found to influence the removal for compounds with a log octanol-water partitioning coefficient greater than 4.5 across the secondary treatment process. For other compounds, the removal of PPCPs across the secondary treatment process was significantly correlated with the biodegradation predicted by BIOWIN4. Removal efficiencies across the aerobic secondary treatment process were predicted by integrating BIOWIN4 into pseudo-first order kinetics of PPCPs and these predicted values were compared to the in situ data. This study determines that under a certain set of operating conditions, two chemical characteristics - the expected hydrophobic interaction and the modeled biological degradation from BIOWIN4 - were found to predict the removal of highly degradable and recalcitrant PPCPs from a wastewater secondary treatment process.


Chemosphere | 2015

Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment ☆

Benjamin Blair; Adam Nikolaus; Curtis J. Hedman; Rebecca Klaper; Timothy Grundl

Conventional activated sludge (CAS) wastewater treatment processes are insufficient at removing many pharmaceutical and personal care products (PPCPs) from wastewater. In addition, negative mass balances, where the effluent concentration is greater than the influent concentration, have been observed in wastewater treatment studies and a further understanding of these results is needed. In this study, the fate and occurrence of 57 PPCPs and hormones were evaluated in an activated sludge process and the mass balances were determined. The goal of the project was to understand the PPCPs biological degradation and the extent of sorption to solids. The samples containing in situ PPCPs (i.e. samples were not spiked with additional PPCPs) were evaluated. Forty-eight of the PPCPs were detected in the soluble form and 29 were detected sorbed to solids. Two notable results were found. First, the results of this study indicate a subset of the highly biodegradable PPCPs stop being degraded at low, yet notable, concentrations. Second, the results revealed that negative mass balances were present for a subset of the PPCPs when evaluating both the soluble and sorbed concentration, for example carbamazepine and ofloxacin. Desorption from solids was not found to attribute to negative mass balances. Overall, the results from this study provide new insights into the fate of PPCPs during CAS wastewater treatment by evaluating the degradation kinetics and sorption and the results may explain the consistent levels of highly degradable PPCPs being emitted from WWTPs worldwide.


Environmental Science & Technology | 2011

Hydroxycarboxylic Acid-Derived Organosulfates: Synthesis, Stability, and Quantification in Ambient Aerosol

Corey N. Olson; M. M. Galloway; Ge Yu; Curtis J. Hedman; Matthew R. Lockett; Tehshik P. Yoon; Elizabeth A. Stone; Lloyd M. Smith; Frank N. Keutsch

Organosulfates have been proposed as contributors to aerosol growth and have been detected in both chamber and atmospheric aerosol samples. We present a simple method for the synthesis of quantitative analytical standards of two small hydroxycarboxylic acid-derived organosulfates, glycolic and lactic acid sulfate. Additionally, we discuss the stability of hydroxycarboxylic acid-derived organosulfates and their previously proposed sulfate hemiacetal isomers in commonly used solvents for filter extraction. The hydroxycarboxylic acid-derived organosulfates were found to be stable under acidic conditions comparable to those found in ambient aerosol. By using synthesized standards, quantitative organosulfate concentrations were measured from ambient particulate matter (PM(2.5)) collected in urban locations in the United States, Mexico City, and Pakistan. Lactic acid sulfate and glycolic acid sulfate concentrations ranged 0.4-3.8 ng/m(3) and 1.9-11.3 ng/m(3), respectively. We propose that glycolic acid sulfate represents an important tracer for atmospheric processes that form organosulfates in ambient particulate matter.


Environmental Science & Technology | 2012

Transformation of Sulfamethazine by Manganese Oxide in Aqueous Solution

Juan Gao; Curtis J. Hedman; Cun Liu; Tan Guo; Joel A. Pedersen

The transformation of the sulfonamide antimicrobial sulfamethazine (SMZ) by a synthetic analogue of the birnessite-family mineral vernadite (δ-MnO(2)) was studied. The observed pseudo-first-order reaction constants (k(obs)) decreased as the pH increased from 4.0 to 5.6, consistent with the decline in δ-MnO(2) reduction potential with increasing pH. Molecular oxygen accelerated SMZ transformation by δ-MnO(2) and influenced the transformation product distribution. Increases in the Na(+) concentration produced declines in k(obs). Transformation products identified by tandem mass spectrometry and the use of (13)C-labeled SMZ included an azo dimer self-coupling product and SO(2) extrusion products. Product analysis and density functional theory calculations are consistent with surface precursor complex formation followed by single-electron transfer from SMZ to δ-MnO(2) to produce SMZ radical species. Sulfamethazine radicals undergo further transformation by at least two pathways: radical-radical self-coupling or a Smiles-type rearrangement with O addition and then extrusion of SO(3). Experiments conducted in H(2)(18)O or in the presence of (18)O(2)(aq) demonstrated that oxygen both from the lattice of as-synthesized δ-MnO(2) and initially present as dissolved oxygen reacted with SMZ. The study results suggest that the oxic state and pH of soil and sediment environments can be expected to influence manganese oxide-mediated transformation of sulfonamide antimicrobials.


Journal of Chromatography B | 2014

Development of a sensitive LC/MS/MS method for vitamin D metabolites: 1,25 Dihydroxyvitamin D2&3 measurement using a novel derivatization agent.

Curtis J. Hedman; Donald A. Wiebe; Subhakar Dey; Josh Plath; Joseph W. Kemnitz; Toni E. Ziegler

Active vitamin D metabolites 1,25-dihydroxyvitamin D2 [1,25-(OH)2-D2; derived from ergocalciferol] and D3 [1,25-(OH)2-D3; derived from cholecalciferol] are found in low levels in the circulation and require a very sensitive method for measurement. Radioimmunoassay (RIA) has been the method of choice, but it lacks the specificity needed to distinguish between 1,25-(OH)2-D2 and -D3, whereas liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods have the advantage of high specificity and sensitivity. Here, we compare a new derivative for ionizing 1,25-(OH)2-D to enhance the signal and provide the most sensitive assay for measuring vitamin D. We used the Amplifex diene method of derivatizing prior to LC/MS/MS and compared it to the standard RIA method and the 4-phenyl-1,2,4-triazole-3,5-dione (PTAD) method of derivatizing prior to LC/MS/MS. In the evaluation of 20 human serum samples, all methods correlated strongly across the upper levels of the standard 1,25-(OH)2-D2 and -D3 ranges (Amplifex and RIA, pc=0.97; Amplifex and PTAD, pc=0.96) but less strongly on the lower levels of the standard range (Amplifex and RIA, pc=0.81; Amplifex and PTAD, pc=0.65) suggesting differences in the sensitivities between the assays. The Amplifex method was determined to be more sensitive than the PTAD method, as peak areas were significantly higher for the Amplifex method and provided for a 10 fold higher signal-to-noise ratio than PTAD. Therefore, the Amplifex LC/MS/MS method is the most sensitive and specific method available for measuring 1,25-(OH)2-D2 and -D3 while using the smallest sample volume.


Breast Cancer Research | 2013

Circulating serum xenoestrogens and mammographic breast density.

Brian L. Sprague; Amy Trentham-Dietz; Curtis J. Hedman; Jue Wang; Jocelyn D.C. Hemming; John M. Hampton; Diana S. M. Buist; Erin J. Aiello Bowles; Gale S. Sisney; Elizabeth S. Burnside

IntroductionHumans are widely exposed to estrogenically active phthalates, parabens, and phenols, raising concerns about potential effects on breast tissue and breast cancer risk. We sought to determine the association of circulating serum levels of these chemicals (reflecting recent exposure) with mammographic breast density (a marker of breast cancer risk).MethodsWe recruited postmenopausal women aged 55 to 70 years from mammography clinics in Madison, Wisconsin (N = 264). Subjects completed a questionnaire and provided a blood sample that was analyzed for mono-ethyl phthalate, mono-butyl phthalate, mono-benzyl phthalate, butyl paraben, propyl paraben, octylphenol, nonylphenol, and bisphenol A (BPA). Percentage breast density was measured from mammograms by using a computer-assisted thresholding method.ResultsSerum BPA was positively associated with mammographic breast density after adjusting for age, body mass index, and other potentially confounding factors. Mean percentage density was 12.6% (95% confidence interval (CI), 11.4 to 14.0) among the 193 women with nondetectable BPA levels, 13.7% (95% CI, 10.7 to 17.1) among the 35 women with detectable levels below the median (<0.55 ng/ml), and 17.6% (95% CI, 14.1 to 21.5) among the 34 women with detectable levels above the median (>0.55 ng/ml; Ptrend = 0.01). Percentage breast density was also elevated (18.2%; 95% CI, 13.4 to 23.7) among the 18 women with serum mono-ethyl phthalate above the median detected level (>3.77 ng/ml) compared with women with nondetectable BPA levels (13.1%; 95% CI, 11.9 to 14.3; Ptrend = 0.07). No other chemicals demonstrated associations with percentage breast density.ConclusionsPostmenopausal women with high serum levels of BPA and mono-ethyl phthalate had elevated breast density. Further investigation of the impact of BPA and mono-ethyl phthalate on breast cancer risk by using repeated serum measurements or other markers of xenoestrogen exposure are needed.


Journal of Environmental Quality | 2009

Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

Jeffrey D. Wilcox; Jean M. Bahr; Curtis J. Hedman; Jocelyn D. Hemming; Miel A. E. Barman; Kenneth R. Bradbury

The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs.


Journal of Environmental Quality | 2008

New measurements of cyanobacterial toxins in natural waters using high performance liquid chromatography coupled to tandem mass spectrometry.

Curtis J. Hedman; William Krick; Dawn A. Karner Perkins; Elisabeth A. Harrahy; William C. Sonzogni

The presence and levels of the cyanobacterial toxins microcystin-LR, anatoxin-a, and cylindrospermopsin were measured in various Wisconsin waters where algal nuisance or bloom conditions were noted. Out of 74 samples analyzed, 36 had detectable levels of microcystin-LR (49%), and four had detectable levels of anatoxin-a (5%). Cylindrospermopsin, the toxin produced by Cylindrospermopsis (a warm water species that has been moving its range northward, including to Wisconsin), was not detected in the field samples tested. Concentrations of microcystin-LR ranged from 1.2 to 7600 microg L(-1). Anatoxin-a ranged from 0.68 to 1750 microg L(-1), which is the highest concentration reported from around the world. Cyanobacterial toxins, because of their high potency, deserve continued scrutiny by resource managers and public health officials responsible for recreational waters.

Collaboration


Dive into the Curtis J. Hedman's collaboration.

Top Co-Authors

Avatar

Jocelyn D.C. Hemming

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

James J. Schauer

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Tan Guo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel A. Pedersen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Mark Mieritz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Martin M. Shafer

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Toni E. Ziegler

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Amy Trentham-Dietz

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge