Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia Boehm is active.

Publication


Featured researches published by Cynthia Boehm.


Journal of Orthopaedic Research | 2001

Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors.

George F. Muschler; Hironori Nitto; Cynthia Boehm; Kirk A. Easley

Bone marrow harvested by aspiration contains connective tissue progenitor cells which can be induced to express a bone phenotype in vitro. The number of osteoblastic progenitors can be estimated by counting the colony‐forming units which express alkaline phosphatase (CFU‐APs). This study was undertaken to test the hypothesis that human aging is associated with a significant change in the number or prevalence of osteoblastic progenitors in the bone marrow. Four 2‐ml bone marrow aspirates were harvested bilaterally from the anterior iliac crest of 57 patients, 31 men (age 15–83) and 26 women (age 13–79). A mean of 64 million nucleated cells was harvested per aspirate. The mean prevalence of CFU‐APs was found to be 55 per million nucleated cells. These data revealed a significant age‐related decline in the number of nucleated cells harvested per aspirate for both men and women (P = 0.002). The number of CFU‐APs harvested per aspirate also decreased significantly with age for women (P = 0.02), but not for men (P = 0.3). These findings are relevant to the harvest of bone marrow derived connective tissue progenitors for bone grafting and other tissue engineering applications, and may also be relevant to the pathophysiology of age‐related bone loss and post‐menopausal osteoporosis.


Journal of Bone and Joint Surgery, American Volume | 1997

Aspiration to Obtain Osteoblast Progenitor Cells from Human Bone Marrow: The Influence of Aspiration Volume*

George F. Muschler; Cynthia Boehm; Kirk A. Easley

Bone marrow contains osteoblast progenitor cells that can be obtained with aspiration and appear to arise from a population of pluripotential connective-tissue stem cells. When cultured in vitro under conditions that promote an osteoblastic phenotype, osteoblast progenitor cells proliferate to form colonies of cells that express alkaline phosphatase and, subsequently, a mature osteoblastic phenotype. We evaluated the number of nucleated cells in bone-marrow samples obtained with aspiration from the anterior iliac crest of thirty-two patients without systemic disease. There were nineteen male patients and thirteen female patients; the mean age was forty-one years (range, fourteen to seventy-seven years). The prevalence and concentration of the osteoblast progenitor cells also were determined, by placing the bone-marrow-derived cells into tissue-culture medium and counting the number of alkaline phosphatase-positive colony-forming units. In order to assess the effect of aspiration volume, two sequential experiments were performed. In the first experiment, aspiration volumes of one and two milliliters were compared. In the second experiment, aspiration volumes of two and four milliliters were compared. The mean prevalence of alkaline phosphatase-positive colony-forming units in the bone-marrow samples was thirty-six per one million nucleated cells (95 per cent confidence interval, 28 to 47); a mean of 2400 alkaline phosphatase-positive colony-forming units was obtained from a two-milliliter aspirate. There was a significant difference among the patients with respect to the number of alkaline phosphatase-positive colony-forming units in these bone-marrow samples (p < 0.001). Seventy per cent of this variation in the prevalence was due to variation among patients, and 20 per cent was due to variation among aspirates. The number of alkaline phosphatase-positive colony-forming units in the aspirate increased as the aspiration volume increased. However, contamination by peripheral blood also increased as the aspiration volume increased. An increase in the aspiration volume from one to four milliliters caused a decrease of approximately 50 per cent in the final concentration of alkaline phosphatase-positive colony-forming units in an average sample. CLINICAL RELEVANCE: On the basis of these data, we recommend that, when bone marrow is obtained with aspiration for use as a bone graft, the volume of aspiration from any one site should not be greater than two milliliters. A larger volume decreases the concentration of osteoblast progenitor cells because of dilution of the bone-marrow sample with peripheral blood. We estimate that four one-milliliter aspirates will provide almost twice the number of alkaline phosphatase-positive colony-forming units as will one four-milliliter aspirate. In addition, these data confirm that humans differ significantly from one another with respect to the cellularity of bone marrow and the prevalence of osteoblast progenitor cells. Additional studies are necessary to determine if the number or prevalence of alkaline phosphatase-positive colony-forming units in bone marrow is a determining factor in the efficacy of an autogenous bone or bone-marrow graft and to ascertain how the number and function of alkaline phosphatase-positive colony-forming units may change as a function of factors such as age, menopausal status, and selected diseases.


Clinical Orthopaedics and Related Research | 2003

Spine Fusion Using Cell Matrix Composites Enriched in Bone Marrow-Derived Cells

George F. Muschler; Hironori Nitto; Yoichi Matsukura; Cynthia Boehm; Antonio Valdevit; Helen Kambic; William J. Davros; Kimerly A. Powell; Kirk A. Easley

Bone marrow-derived cells including osteoblastic progenitors can be concentrated rapidly from bone marrow aspirates using the surface of selected implantable matrices for selective cell attachment. Concentration of cells in this way to produce an enriched cellular composite graft improves graft efficacy. The current study was designed to test the hypothesis that the biologic milieu of a bone marrow clot will significantly improve the efficacy of such a graft. An established posterior spinal fusion model and cancellous bone matrix was used to compare an enriched cellular composite bone graft alone, bone matrix plus bone marrow clot, and an enriched bone matrix composite graft plus bone marrow clot. Union score, quantitative computed tomography, and mechanical testing were used to define outcome. The union score for the enriched bone matrix plus bone marrow clot composite was superior to the enriched bone matrix alone and the bone matrix plus bone marrow clot. The enriched bone matrix plus bone marrow clot composite also was superior to the enriched bone matrix alone in fusion volume and in fusion area. These data confirm that the addition of a bone marrow clot to an enriched cell-matrix composite graft results in significant improvement in graft performance. Enriched composite grafts prepared using this strategy provide a rapid, simple, safe, and inexpensive method for intraoperative concentration and delivery of bone marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting.


Clinical Orthopaedics and Related Research | 2005

Selective retention of bone marrow-derived cells to enhance spinal fusion.

George F. Muschler; Yoichi Matsukura; Hironori Nitto; Cynthia Boehm; Antonio Valdevit; Helen Kambic; William J. Davros; Kirk A. Easley; Kimerly A. Powell

Connective tissue progenitors can be concentrated rapidly from fresh bone marrow aspirates using some porous matrices as a surface for cell attachment and selective retention, and for creating a cellular graft that is enriched with respect to the number of progenitor cells. We evaluated the potential value of this method using demineralized cortical bone powder as the matrix. Matrix alone, matrix plus marrow, and matrix enriched with marrow cells were compared in an established canine spinal fusion model. Fusions were compared based on union score, fusion mass, fusion volume, and by mechanical testing. Enriched matrix grafts delivered a mean of 2.3 times more cells and approximately 5.6 times more progenitors than matrix mixed with bone marrow. The union score with enriched matrix was superior to matrix alone and matrix plus marrow. Fusion volume and fusion area also were greater with the enriched matrix. These data suggest that the strategy of selective retention provides a rapid, simple, and effective method for concentration and delivery of marrow-derived cells and connective tissue progenitors that may improve the outcome of bone grafting procedures in various clinical settings.


Biomaterials | 2009

A three dimensional scaffold with precise micro-architecture and surface micro-textures

Alvaro Mata; Eun Jung Kim; Cynthia Boehm; Aaron J. Fleischman; George F. Muschler; Shuvo Roy

A three-dimensional (3D) structure comprising precisely defined micro-architecture and surface micro-textures, designed to present specific physical cues to cells and tissues, may provide an efficient scaffold in a variety of tissue engineering and regenerative medicine applications. We report a fabrication technique based on microfabrication and soft lithography that permits for the development of 3D scaffolds with both precisely engineered architecture and tailored surface topography. The scaffold fabrication technique consists of three key steps starting with microfabrication of a mold using an epoxy-based photoresist (SU-8), followed by dual-sided molding of a single layer of polydimethylsiloxane (PDMS) using a mechanical jig for precise motion control; and finally, alignment, stacking, and adhesion of multiple PDMS layers to achieve a 3D structure. This technique was used to produce 3D Texture and 3D Smooth PDMS scaffolds, where the surface topography comprised 10 microm diameter/height posts and smooth surfaces, respectively. The potential utility of the 3D microfabricated scaffolds, and the role of surface topography, were subsequently investigated in vitro with a combined heterogeneous population of adult human stem cells and their resultant progenitor cells, collectively termed connective tissue progenitors (CTPs), under conditions promoting the osteoblastic phenotype. Examination of bone-marrow derived CTPs cultured on the 3D Texture scaffold for 9 days revealed cell growth in three dimensions and increased cell numbers compared to those on the 3D Smooth scaffold. Furthermore, expression of alkaline phosphatase mRNA was higher on the 3D Texture scaffold, while osteocalcin mRNA expression was comparable for both types of scaffolds.


Journal of Bone and Joint Surgery, American Volume | 2005

Aspiration of Osteoprogenitor Cells for Augmenting Spinal Fusion: Comparison of Progenitor Cell Concentrations from the Vertebral Body and Iliac Crest

Robert F. McLain; James E. Fleming; Cynthia Boehm; George F. Muschler

BACKGROUND Successful arthrodesis in challenging clinical scenarios is facilitated when the site is augmented with autograft bone. The iliac crest has long been the preferred source of autograft material, but graft harvest is associated with frequent complications and pain. Connective tissue progenitor cells aspirated from the iliac crest and concentrated with allograft matrix and demineralized bone matrix provide a promising alternative to traditional autograft harvest. The vertebral body, an even larger reservoir of myeloproliferative cells, should provide progenitor cell concentrations similar to those of the iliac crest. METHODS Twenty-one adults (eleven men and ten women with a mean age of 59 +/- 14 years) undergoing posterior lumbar arthrodesis and pedicle screw instrumentation underwent transpedicular aspiration of connective tissue progenitor cells. Aspirates were obtained from two depths within the vertebral body and were quantified relative to matched, bilateral aspirates from the iliac crest that were obtained from the same patient at the same time. Histochemical analysis was used to determine the prevalence of vertebral progenitor cells relative to the depth of aspiration, the vertebral level, age, and gender, as compared with the iliac crest standard. The cell count, progenitor cell concentration (cells/cc marrow), and progenitor cell prevalence (cells/million cells) were calculated. RESULTS Aspirates of vertebral marrow demonstrated comparable or greater concentrations of progenitor cells compared with matched controls from the iliac crest. Progenitor cell concentrations were consistently higher than matched controls from the iliac crest (p = 0.05). The concentration of osteogenic progenitor cells was, on the average, 71% higher in the vertebral aspirates than in the paired iliac crest samples (p = 0.05). With the numbers available, there were no significant differences relative to vertebral body level, the side aspirated, the depth of aspiration, or gender. An age-related decline in cellularity was suggested for the iliac crest aspirates. CONCLUSIONS The vertebral body is a suitable site for aspiration of bone marrow for graft augmentation during spinal arthrodesis.


Biomedical Microdevices | 2002

Analysis of Connective Tissue Progenitor Cell Behavior on Polydimethylsiloxane Smooth and Channel Micro-Textures

Alvaro Mata; Cynthia Boehm; Aaron J. Fleischman; George F. Muschler; Shuvo Roy

Growth of human connective tissue progenitor cells (CTPs) was characterized on smooth and microtextured polydimethylsiloxane (PDMS) surfaces. Human bone marrow derived cells were cultured for nine days under conditions promoting osteoblastic differentiation on Smooth PDMS and PDMS Channel microtextures (11 μm high, 45 μm wide channels, and separated by 5 μm wide ridges). Glass tissue culture dish surfaces were used as controls. Cell numbers per colony, cell density within colonies, alignment of cells, area of colonies, and colony shapes were determined as a function of substrate surface topography. An alkaline phosphatase stain was used as a marker for osteoblastic phenotype. CTPs attached, proliferated, and differentiated on all surfaces with cell process lengths of up to 80 μm. Cells on the Smooth PDMS and control surfaces spread and proliferated as colonies in proximity to other cells and migrated in random directions creating colonies that covered significantly larger areas (0.96 and 1.05 mm2, respectively) than colonies formed on PDMS Channel textures (0.64 mm2). In contrast, cells on PDMS Channel textures spread, proliferated, aligned along the channel axis, and created colonies that were more dense, and with lengths of longest colony axes that were significantly longer (3252 μm) than those on the Smooth PDMS (1265 μm) and control surfaces (1319 μm). Cells on PDMS Channel textures were aligned at an angle of 14.44° relative to the channel axis, and the resulting colonies exhibited a significantly higher aspect ratio (13.72) compared to Smooth PDMS (1.57) and control surfaces (1.51).


Acta Biomaterialia | 2010

Post microtextures accelerate cell proliferation and osteogenesis

Eun Jung Kim; Cynthia Boehm; Alvaro Mata; Aaron J. Fleischman; George F. Muschler; Shuvo Roy

The influence of surface microtexture on osteogenesis was investigated in vitro by examining the proliferation and differentiation characteristics of a class of adult stem cells and their progeny, collectively known as connective tissue progenitor cells (CTPs). Human bone marrow-derived CTPs were cultured for up to 60 days on smooth polydimethylsiloxane (PDMS) surfaces and on PDMS with post microtextures that were 10 microm in diameter and 6 microm in height, with 10 microm separation. DNA quantification revealed that the numbers of CTPs initially attached to both substrates were similar. However, cells on microtextured PDMS transitioned from lag phase after 4 days of culture, in contrast to 6 days for cells on smooth surfaces. By day 9 cells on the smooth surfaces exhibited arbitrary flattened shapes and migrated without any preferred orientation. In contrast, cells on the microtextured PDMS grew along the array of posts in an orthogonal manner. By days 30 and 60 cells grew and covered all surfaces with extracellular matrix. Western blot analysis revealed that the expression of integrin alpha5 was greater on the microtextured PDMS compared with smooth surfaces. Real time reverse transcription-polymerase chain reaction revealed that gene expression of alkaline phosphatase had decreased by days 30 and 60, compared with that on day 9, for both substrates. Gene expression of collagen I and osteocalcin was consistently greater on post microtextures relative to smooth surfaces at all time points.


Biomaterials | 2009

The influence of tethered epidermal growth factor on connective tissue progenitor colony formation

Nicholas A. Marcantonio; Cynthia Boehm; Richard J. Rozic; Ada Au; Alan Wells; George F. Muschler; Linda G. Griffith

Strategies to combine aspirated marrow cells with scaffolds to treat connective tissue defects are gaining increasing clinical attention and use. In situations such as large defects where initial survival and proliferation of transplanted connective tissue progenitors (CTPs) are limiting, therapeutic outcomes might be improved by using the scaffold to deliver growth factors that promote the early stages of cell function in the graft. Signaling by the epidermal growth factor receptor (EGFR) plays a role in cell survival and has been implicated in bone development and homeostasis. Providing epidermal growth factor (EGF) in a scaffold-tethered format may sustain local delivery and shift EGFR signaling to pro-survival modes compared to soluble ligand. We therefore examined the effect of tethered EGF on osteogenic colony formation from human bone marrow aspirates in the context of three different adhesion environments using a total of 39 donors. We found that tethered EGF, but not soluble EGF, increased the numbers of colonies formed regardless of adhesion background, and that tethered EGF did not impair early stages of osteogenic differentiation.


Journal of Orthopaedic Research | 2008

The effect of oxygen tension on the in vitro assay of human osteoblastic connective tissue progenitor cells.

Sandra Villarruel; Cynthia Boehm; Mark Pennington; Jason A. Bryan; Kimerly A. Powell; George F. Muschler

Connective tissue progenitors (CTPs) are defined as the heterogeneous set of stem and progenitor cells that reside in native tissues and are capable of proliferation and differentiation into one or more connective tissue phenotypes. CTPs play important roles in tissue formation, repair, and remodeling. Therefore, in vitro assays of CTP prevalence and biological potential have important scientific and clinical relevance. This study evaluated oxygen tension as an important variable in optimizing in vitro conditions for quantitative assays of human CTPs. Bone marrow aspirates were collected from 20 human subjects and cultured using established medium conditions at ambient oxygen tensions of 1, 5, 10, and 20%. Colony‐forming efficiency (CFE), proliferation, and colony density were assessed. CFE and proliferation were greatest at 5% O2. Traditional conditions using atmospheric oxygen tension (20% O2) reduced CFE by as much as 32%. CFE and proliferation at 1% O2 were less than 5% O2 but comparable to that seen at 20% O2, suggesting that CTPs are relatively resilient under hypoxic conditions, a fact that may be relevant to their function in wound repair and their potential use in tissue engineering applications involving transplantation into settings of moderate to severe hypoxia. These data demonstrate that optimization of quantitative assays for CTPs will require control of oxygen tension.

Collaboration


Dive into the Cynthia Boehm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuvo Roy

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvaro Mata

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Eun Jung Kim

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge