Cynthia Gerlein-Safdi
Princeton University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cynthia Gerlein-Safdi.
Frontiers of Environmental Science & Engineering in China | 2017
Feng Wang; Xueqiu Zhao; Cynthia Gerlein-Safdi; Yue Mu; Dongfang Wang; Qi Lu
Dust and Sand Storms (DSS) originating in deserts in arid and semi-arid regions are events raising global public concern. An important component of atmospheric aerosols, dust aerosols play a key role in climatic and environmental changes at the regional and the global scale. Deserts and semi-deserts are the main source of dust and sand, but regions that undergo vegetation deterioration and desertification due to climate change and human activities also contribute significantly to DSS. Dust aerosols are mainly composed of dust particles with an average diameter of 2 mm, which can be transported over thousands of kilometers. Dust aerosols influence the radiation budget of the earthatmosphere system by scattering solar short-wave radiation and absorbing surface long-wave radiation. They can also change albedo and rainfall patterns because they can act as cloud condensation nuclei (CCN) or ice nuclei (IN). Dust deposition is an important source of both marine nutrients and contaminants. Dust aerosols that enter marine ecosystems after long-distance transport influence phytoplankton biomass in the oceans, and thus global climate by altering the amount of CO2 absorbed by phytoplankton. In addition, the carbonates carried by dust aerosols are an important source of carbon for the alkaline carbon pool, which can buffer atmospheric acidity and increase the alkalinity of seawater. DSS have both positive and negative impacts on human society: they can exert adverse impacts on human’s living environment, but can also contribute to the mitigation of global warming and the reduction of atmospheric acidity.
Rapid Communications in Mass Spectrometry | 2016
Elliot Chang; Adam Wolf; Cynthia Gerlein-Safdi; Kelly K. Caylor
RATIONALE Volatile organic compounds (VOCs) such as methanol and ethanol in water extracted from plants cause spectral interference in isotope ratio infrared spectroscopy (IRIS). This contamination degrades the accuracy of measurements, limiting the use of IRIS. In response, this study presents a new decontamination method of VOCs for enhanced IRIS measurements. METHODS The isotopic compositions of water from laboratory-made and field-collected plant samples pre- and post-treatment were analyzed using IRIS. Traditional treatment methods of activated charcoal and commercial pre-combustion systems (MCM) were compared with our new treatment method that implements solid-phase extraction (SPE). The absolute concentrations of contaminants pre- and post-treatment were determined using (1)H and (13)C nuclear magnetic resonance to assess the effectiveness of the different treatments. RESULTS SPE removes an average of 86.7% and 78.8% ethanol and methanol, respectively, significantly reducing spectral interference. SPE reduces errors to within instrumental noise for both ethanol and methanol at concentrations found in nature (<3.0% and 0.08%, respectively). Activated charcoal minimally affected alcohol concentrations. MCM significantly worsened ethanol-contaminated water isotope measurements by producing primary alcohol oxidation products such as formic acid, another compound that interferes with IRIS absorption. CONCLUSIONS SPE is an effective, low-cost method for eliminating errors in ethanol-contaminated samples. For samples where methanol is prevalent, combining SPE and MCM is more effective than the use of SPE alone. Hence, SPE treatment alone or in conjunction with MCM is recommended as an effective pre-analysis purification method for water extracted from plants.
Oecologia | 2018
Cynthia Gerlein-Safdi; Paul P. G. Gauthier; Kelly K. Caylor
Foliar uptake of water from the surface of leaves is common when rainfall is scarce and non-meteoric water such as dew or fog is more abundant. However, many species in more mesic environments have hydrophobic leaves that do not allow the plant to uptake water. Unlike foliar uptake, all species can benefit from dew- or fog-induced transpiration suppression, but despite its ubiquity, transpiration suppression has so far never been quantified. Here, we investigate the effect of dew-induced transpiration suppression on the water balance and the isotope composition of leaves via a series of experiments. Characteristically, hydrophobic leaves of a tropical plant, Colocasia esculenta, are misted with isotopically enriched water to reproduce dew deposition. This species does not uptake water from the surface of its leaves. We measure leaf water isotopes and water potential and find that misted leaves exhibit a higher water potential and a more depleted water isotope composition than dry leaves, suggesting a ∼ 30% decrease in transpiration rate compared to control leaves. We propose three possible mechanisms governing the interaction of water droplets with leaf energy balance: increase in albedo from the presence of dew droplets, decrease in leaf temperature from the evaporation of dew, and local decrease in vapor pressure deficit. Comparing previous studies on foliar uptake to our results, we conclude that transpiration suppression has an effect of similar amplitude, yet opposite sign to foliar uptake on leaf water isotopes.
bioRxiv | 2017
Cynthia Gerlein-Safdi; Paul P. G. Gauthier; Kelly K. Caylor
Foliar uptake of water from the surface of leaves is common when rainfall is scarce and non-meteoric water such as dew or fog is more abundant. However, many species in more mesic environments have hydrophobic leaves that do not allow the plant to uptake water. Unlike foliar uptake, all species can benefit from dew- or fog-induced transpiration suppression, but despite its ubiquity, transpiration suppression has so far never been quantified. Here, we investigate the effect of dew-induced transpiration suppression on the water balance and the isotope composition of leaves via a series of experiments. Characteristically hydrophobic leaves of a tropical plant, Colocasia esculenta, are misted with isotopically enriched water to reproduce dew deposition. This species does not uptake water from the surface of its leaves. We measure leaf water isotopes and water potential and find that misted leaves exhibit a higher water potential (p < 0.05) and a more depleted water isotope composition than dry leaves (p < 0.001), suggesting a ~30% decrease in transpiration rate (p < 0.001) compared to control leaves. We propose three possible mechanisms governing the interaction of water droplets with leaf energy balance: increase in albedo from the presence of dew droplets, decrease in leaf temperature from the evaporation of dew, and local decrease in vapor pressure deficit. Comparing previous studies on foliar uptake to our results, we conclude that transpiration suppression has an effect of similar amplitude, yet opposite sign to foliar uptake on leaf water isotopes.
Rapid Communications in Mass Spectrometry | 2017
Jiangpeng Cui; Lide Tian; Cynthia Gerlein-Safdi; Dongmei Qu
Ecohydrology | 2018
Cynthia L. Wright; Aurora Kagawa-Viviani; Cynthia Gerlein-Safdi; Giovanny M. Mosquera; María Poca; Han Tseng; Kwok Pan Chun
Plant Cell and Environment | 2017
Cynthia Gerlein-Safdi; Paul P. G. Gauthier; Craig James Sinkler; Kelly K. Caylor
Agricultural and Forest Meteorology | 2018
Cynthia Gerlein-Safdi; Michael C. Koohafkan; Michaella Chung; Fulton E. Rockwell; Sally E. Thompson; Kelly K. Caylor
Emerging Issues in Tropical Ecohydrology | 2016
Cynthia Gerlein-Safdi
2015 AGU Fall Meeting | 2015
Cynthia Gerlein-Safdi