Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia Gomes is active.

Publication


Featured researches published by Cynthia Gomes.


The Journal of Neuroscience | 2013

Axonally Synthesized β-Actin and GAP-43 Proteins Support Distinct Modes of Axonal Growth

Christopher J. Donnelly; Michael Park; Mirela Spillane; Soonmoon Yoo; Almudena Pacheco; Cynthia Gomes; Deepika Vuppalanchi; Marguerite McDonald; Hak Hee Kim; Tanuja T. Merianda; Gianluca Gallo; Jeffery L. Twiss

Increasing evidence points to the importance of local protein synthesis for axonal growth and responses to axotomy, yet there is little insight into the functions of individual locally synthesized proteins. We recently showed that expression of a reporter mRNA with the axonally localizing β-actin mRNA 3′UTR competes with endogenous β-actin and GAP-43 mRNAs for binding to ZBP1 and axonal localization in adult sensory neurons (Donnelly et al., 2011). Here, we show that the 3′UTR of GAP-43 mRNA can deplete axons of endogenous β-actin mRNA. We took advantage of this 3′UTR competition to address the functions of axonally synthesized β-actin and GAP-43 proteins. In cultured rat neurons, increasing axonal synthesis of β-actin protein while decreasing axonal synthesis of GAP-43 protein resulted in short highly branched axons. Decreasing axonal synthesis of β-actin protein while increasing axonal synthesis of GAP-43 protein resulted in long axons with few branches. siRNA-mediated depletion of overall GAP-43 mRNA from dorsal root ganglia (DRGs) decreased the length of axons, while overall depletion of β-actin mRNA from DRGs decreased the number of axon branches. These deficits in axon growth could be rescued by transfecting with siRNA-resistant constructs encoding β-actin or GAP-43 proteins, but only if the mRNAs were targeted for axonal transport. Finally, in ovo electroporation of axonally targeted GAP-43 mRNA increased length and axonally targeted β-actin mRNA increased branching of sensory axons growing into the chick spinal cord. These studies indicate that axonal translation of β-actin mRNA supports axon branching and axonal translation of GAP-43 mRNA supports elongating growth.


The Journal of Neuroscience | 2015

mRNAs and Protein Synthetic Machinery Localize into Regenerating Spinal Cord Axons When They Are Provided a Substrate That Supports Growth

Ashley L. Kalinski; Rahul Sachdeva; Cynthia Gomes; Seung Joon Lee; Zalak Shah; John D. Houlé; Jeffery L. Twiss

Although intra-axonal protein synthesis is well recognized in cultured neurons and during development in vivo, there have been few reports of mRNA localization and/or intra-axonal translation in mature CNS axons. Indeed, previous work indicated that mature CNS axons contain much lower quantities of translational machinery than PNS axons, leading to the conclusion that the capacity for intra-axonal protein synthesis is linked to the intrinsic capacity of a neuron for regeneration, with mature CNS neurons showing much less growth after injury than PNS neurons. However, when regeneration by CNS axons is facilitated, it is not known whether the intra-axonal content of translational machinery changes or whether mRNAs localize into these axons. Here, we have used a peripheral nerve segment grafted into the transected spinal cord of adult rats as a supportive environment for regeneration by ascending spinal axons. By quantitative fluorescent in situ hybridization combined with immunofluorescence to unambiguously distinguish intra-axonal mRNAs, we show that regenerating spinal cord axons contain β-actin, GAP-43, Neuritin, Reg3a, Hamp, and Importin β1 mRNAs. These axons also contain 5S rRNA, phosphorylated S6 ribosomal protein, eIF2α translation factor, and 4EBP1 translation factor inhibitory protein. Different levels of these mRNAs in CNS axons from regenerating PNS axons may relate to differences in the growth capacity of these neurons, although the presence of mRNA transport and likely local translation in both CNS and PNS neurons suggests an active role in the regenerative process. SIGNIFICANCE STATEMENT Although peripheral nerve axons retain the capacity to locally synthesize proteins into adulthood, previous studies have argued that mature brain and spinal cord axons cannot synthesize proteins. Protein synthesis in peripheral nerve axons is increased during regeneration, and intra-axonally synthesized proteins have been shown to contribute to nerve regeneration. Here, we show that mRNAs and translational machinery are transported into axons regenerating from the spinal cord into the permissive environment of a peripheral nerve graft. Our data raise the possibility that spinal cord axons may make use of localized protein synthesis for regeneration.


Developmental Neurobiology | 2014

Molecular determinants of the axonal mRNA transcriptome.

Cynthia Gomes; Tanuja T. Merianda; Seung Joon Lee; Soonmoon Yoo; Jeffery L. Twiss

Axonal protein synthesis has been shown to play a role in developmental and regenerative growth, as well as in cell body responses to axotomy. Recent studies have begun to identify the protein products that contribute to these autonomous responses of axons. In the peripheral nervous system, intra‐axonal protein synthesis has been implicated in the localized in vivo responses to neuropathic stimuli, and there is emerging evidence for protein synthesis in CNS axons in vivo. Despite that hundreds of mRNAs have now been shown to localize into the axonal compartment, knowledge of what RNA binding proteins are responsible for this is quite limited. Here, we review the current state of knowledge of RNA transport mechanisms and highlight recently uncovered mechanisms for dynamically altering the axonal transcriptome. Both changes in the levels or activities of components of the RNA transport apparatus and alterations in transcription of transported mRNAs can effectively shift the axonal mRNA population. Consistent with this, the axonal RNA population shifts with development, with changes in growth state, and in response to extracellular stimulation. Each of these events must impact the transcriptional and transport apparatuses of the neuron, thus directly and indirectly modifying the axonal transcriptome.


The Journal of Neuroscience | 2013

Axonal Localization of Neuritin/CPG15 mRNA in Neuronal Populations through Distinct 5′ and 3′ UTR Elements

Tanuja T. Merianda; Cynthia Gomes; Soonmoon Yoo; Deepika Vuppalanchi; Jeffery L. Twiss

Many neuronal mRNAs are actively transported into distal axons. The 3′ untranslated regions (UTRs) of axonal mRNAs often contain cues for their localization. The 3′ UTR of neuritin mRNA was shown to be sufficient for localization into axons of hippocampal neurons. Here, we show that neuritin mRNA localizes into axons of rat sensory neurons, but this is predominantly driven by the 5′ rather than 3′ UTR. Neuritin mRNA shifts from cell body to axon predominantly after nerve crush injury, suggesting that it encodes a growth-associated protein. Consistent with this, overexpression of neuritin increases axon growth but only when its mRNA localizes into the axons.


The Journal of Neuroscience | 2015

Axonal amphoterin mRNA is regulated by translational control and enhances axon outgrowth.

Tanuja T. Merianda; Jennifer Coleman; Hak Hee Kim; Pabitra K. Sahoo; Cynthia Gomes; Paul Brito-Vargas; Heikki Rauvala; Armin Blesch; Soonmoon Yoo; Jeffery L. Twiss

High mobility group (HMG) proteins concentrate in the nucleus, interacting with chromatin. Amphoterin is an HMG protein (HMGB1) that has been shown to have extranuclear functions and can be secreted from some cell types. Exogenous amphoterin can increase neurite growth, suggesting that the secreted protein may have growth promoting activities in neurons. Consistent with this, we show that depletion of amphoterin mRNA from cultured adult rat DRG neurons attenuates neurite outgrowth, pointing to autocrine or paracrine mechanisms for its growth-promoting effects. The mRNA encoding amphoterin localizes to axonal processes and we showed recently that its 3′-UTR is sufficient for axonal localization of heterologous transcripts (Donnelly et al., 2013). Here, we show that amphoterin mRNA is transported constitutively into axons of adult DRG neurons. A preconditioning nerve injury increases the levels of amphoterin protein in axons without a corresponding increase in amphoterin mRNA in the axons. A 60 nucleotide region of the amphoterin mRNA 3′-UTR is necessary and sufficient for its localization into axons of cultured sensory neurons. Amphoterin mRNA 3′-UTR is also sufficient for axonal localization in distal axons of DRG neurons in vivo. Overexpression of axonally targeted amphoterin mRNA increases axon outgrowth in cultured sensory neurons, but axon growth is not affected when the overexpressed mRNA is restricted to the cell body.


Cell Reports | 2016

Nucleolin-Mediated RNA Localization Regulates Neuron Growth and Cycling Cell Size

Rotem Ben-Tov Perry; Ida Rishal; Ella Doron-Mandel; Ashley L. Kalinski; Katalin F. Medzihradszky; Marco Terenzio; Stefanie Alber; Sandip Koley; Albina Lin; Meir Rozenbaum; Dmitry Yudin; Pabitra K. Sahoo; Cynthia Gomes; Vera Shinder; Wasim Geraisy; Eric A. Huebner; Clifford J. Woolf; Avraham Yaron; Alma L. Burlingame; Jeffery L. Twiss; Mike Fainzilber

Summary How can cells sense their own size to coordinate biosynthesis and metabolism with their growth needs? We recently proposed a motor-dependent bidirectional transport mechanism for axon length and cell size sensing, but the nature of the motor-transported size signals remained elusive. Here, we show that motor-dependent mRNA localization regulates neuronal growth and cycling cell size. We found that the RNA-binding protein nucleolin is associated with importin β1 mRNA in axons. Perturbation of nucleolin association with kinesins reduces its levels in axons, with a concomitant reduction in axonal importin β1 mRNA and protein levels. Strikingly, subcellular sequestration of nucleolin or importin β1 enhances axonal growth and causes a subcellular shift in protein synthesis. Similar findings were obtained in fibroblasts. Thus, subcellular mRNA localization regulates size and growth in both neurons and cycling cells.


Science | 2018

Locally translated mTOR controls axonal local translation in nerve injury

Marco Terenzio; Sandip Koley; Nitzan Samra; Ida Rishal; Qian Zhao; Pabitra K. Sahoo; Anatoly Urisman; Letizia Marvaldi; Juan A. Oses-Prieto; Craig M. Forester; Cynthia Gomes; Ashley L. Kalinski; Agostina Di Pizio; Ella Doron-Mandel; Rotem Ben-Tov Perry; Indrek Koppel; Jeffery L. Twiss; Alma L. Burlingame; Mike Fainzilber

Local control of localized protein synthesis Localized protein synthesis provides spatiotemporal precision for injury responses and growth decisions at remote positions in nerve axons. Terenzio et al. show that this process is controlled by local translation of preexisting axonal mRNA encoding the master regulator mTOR (see the Perspective by Riccio). mTOR controls both its own synthesis and that of most newly synthesized proteins at axonal injury sites, thereby determining the subsequent survival and growth of the injured neuron. Science, this issue p. 1416; see also p. 1331 Axonal localization of mTOR mRNA enables subcellular regulation of local protein synthesis in injured nerves. How is protein synthesis initiated locally in neurons? We found that mTOR (mechanistic target of rapamycin) was activated and then up-regulated in injured axons, owing to local translation of mTOR messenger RNA (mRNA). This mRNA was transported into axons by the cell size–regulating RNA-binding protein nucleolin. Furthermore, mTOR controlled local translation in injured axons. This included regulation of its own translation and that of retrograde injury signaling molecules such as importin β1 and STAT3 (signal transducer and activator of transcription 3). Deletion of the mTOR 3′ untranslated region (3′UTR) in mice reduced mTOR in axons and decreased local translation after nerve injury. Both pharmacological inhibition of mTOR in axons and deletion of the mTOR 3′UTR decreased proprioceptive neuronal survival after nerve injury. Thus, mRNA localization enables spatiotemporal control of mTOR pathways regulating local translation and long-range intracellular signaling.


Journal of Toxicological Sciences | 2015

Cadmium up-regulates transcription of the steroidogenic acute regulatory protein (StAR) gene through phosphorylated CREB rather than SF-1 in K28 cells.

Soo-Yun Park; Cynthia Gomes; Sung-Dug Oh; Jaemog Soh

Cadmium is a widely used heavy metal in industry and affects the male reproductive system of animals, including humans, as a result of occupational and environmental exposures. However, the molecular mechanism underlying its effect on steroidogenesis in gonads remains unclear. In this study, we demonstrated that exposure of K28 mouse testicular Leydig tumor cells to cadmium led to a significant increase in the mRNA level, promoter activity and protein level of the steroidogenic acute regulatory protein (StAR), an essential factor for steroid biosynthesis. It has been well documented that StAR gene transcription is regulated by multiple transcription factors, including cAMP-responsive element binding protein (CREB) family members and SF-1. Cadmium treatment caused an increase in CREB phosphorylation but did not alter the CREB protein level in the nucleus. EMSA studies revealed that cadmium-induced phosphorylated CREB formed specific complexes with the proximal region of the StAR gene promoter. Furthermore, co-transfection with a CREB expression plasmid significantly increased cadmium-induced StAR promoter activity. However, the nuclear level and the affinity of SF-1 protein for the StAR proximal promoter were dramatically decreased upon exposure to cadmium. Taken together, these results suggest that cadmium up-regulates StAR gene expression through phosphorylated CREB rather than through SF-1 in mouse testicular Leydig cells.


Journal of Cell Science | 2017

Axonal localization of neuritin/CPG15 mRNA is limited by competition for HuD binding

Cynthia Gomes; Seung Joon Lee; Amy S. Gardiner; Terika Smith; Pabitra K. Sahoo; Priyanka Patel; Elizabeth L. Thames; Reycel Rodriguez; Ross Taylor; Soonmoon Yoo; Tilman Heise; Amar N. Kar; Nora I. Perrone-Bizzozero; Jeffery L. Twiss

ABSTRACT HuD protein (also known as ELAVL4) has been shown to stabilize mRNAs with AU-rich elements (ARE) in their 3′ untranslated regions (UTRs), including Gap43, which has been linked to axon growth. HuD also binds to neuritin (Nrn1) mRNA, whose 3′UTR contains ARE sequences. Although the Nrn1 3′UTR has been shown to mediate its axonal localization in embryonic hippocampal neurons, it is not active in adult dorsal root ganglion (DRG) neurons. Here, we asked why the 3′UTR is not sufficient to mediate the axonal localization of Nrn1 mRNA in DRG neurons. HuD overexpression increases the ability of the Nrn1 3′UTR to mediate axonal localizing in DRG neurons. HuD binds directly to the Nrn1 ARE with about a two-fold higher affinity than to the Gap43 ARE. Although the Nrn1 ARE can displace the Gap43 ARE from HuD binding, HuD binds to the full 3′UTR of Gap43 with higher affinity, such that higher levels of Nrn1 are needed to displace the Gap43 3′UTR. The Nrn1 3′UTR can mediate a higher level of axonal localization when endogenous Gap43 is depleted from DRG neurons. Taken together, our data indicate that endogenous Nrn1 and Gap43 mRNAs compete for binding to HuD for their axonal localization and activity of the Nrn1 3′UTR. Summary: The stoichiometry of competing target mRNAs (Nrn1 and Gap43), RNA-binding protein levels (HuD), and affinity of mRNA–RNA-binding protein interactions contribute to the efficiency of axonal mRNA localization elements.


Development & Reproduction | 2017

DnaJC18, a Novel Type III DnaJ Family Protein, is Expressed Specifically in Rat Male Germ Cells

Cynthia Gomes; Jaemog Soh

ABSTRACT Mammalian spermatogenesis occurs in a precise and coordinated manner in the seminiferous tubules. One of the attempts to understand the detailed biological process during mammalian spermatogenesis at the molecular level has been to identify the testis specific genes followed by study of the testicular expression pattern of the genes. From the subtracted cDNA library of rat testis prepared using representational difference analysis (RDA) method, a complimentary DNA clone encoding type III member of a DnaJ family protein, DnaJC18, was cloned (GenBank Accession No. DQ158861). The full-length DnaJC18 cDNA has the longest open reading frame of 357 amino acids. Tissue and developmental Northern blot analysis revealed that the DnaJC18 gene was expressed specifically in testis and began to express from postnatal week 4 testis, respectively. In situ hybridization studies showed that DnaJC18 mRNA was expressed only during the maturation stages of late pachy- tene, round and elongated spermatids of adult rat testis. Western blot analysis with DnaJC18 antibody revealed that 41.2 kDa DnaJC18 protein was detected only in adult testis. Immunohistochemistry study further confirmed that DnaJC18 protein, was expressed in developing germ cells and the result was in concert with the in situ hybridization result. Confocal microscopy with GFP tagged DnaJC18 protein revealed that it was localized in the cytoplasm of cells. Taken together, these results suggested that testis specific DnaJC18, a member of the type III DnaJ protein family, might play a role during germ cell maturation in adult rat testis.

Collaboration


Dive into the Cynthia Gomes's collaboration.

Top Co-Authors

Avatar

Jeffery L. Twiss

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Soonmoon Yoo

Alfred I. duPont Hospital for Children

View shared research outputs
Top Co-Authors

Avatar

Pabitra K. Sahoo

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ella Doron-Mandel

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ida Rishal

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Mike Fainzilber

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Rotem Ben-Tov Perry

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Ashley L. Kalinski

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Seung Joon Lee

University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge