Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia L. Bethea is active.

Publication


Featured researches published by Cynthia L. Bethea.


Frontiers in Neuroendocrinology | 2002

Diverse actions of ovarian steroids in the serotonin neural system.

Cynthia L. Bethea; Nick Z. Lu; Chrisana Gundlah; John M. Streicher

All of the serotonin-producing neurons of the mammalian brain are located in 10 nuclei in the mid- and hindbrain regions. The cells of the rostal nuclei project to almost every area of the forebrain and regulate diverse neural processes from higher order functions in the prefrontal cortex such as integrative cognition and memory, to limbic system control of arousal and mood, to diencephalic functions such as pituitary hormone secretion, satiety, and sexual behavior. The more caudal serotonin neurons project to the spinal cord and interact with numerous autonomic and sensory systems. All of these neural functions are sensitive to the presence or absence of the ovarian hormones, estrogen and progesterone. We have shown that serotonin neurons in nonhuman primates contain estrogen receptor beta and progestin receptors. Thus, they are targets for ovarian steroids which in turn modify gene expression. Any change in serotoninergic neural function could be manifested by a change in any of the projection target systems and in this manner, serotonin neurons integrate steroid hormone information and partially transduce their action in the CNS. This article reviews the work conducted in this laboratory on the actions of estrogens and progestins in the serotonin neural system of nonhuman primates. Comparisons to results obtained in other laboratory animal models are made when available and limited clinical data are referenced. The ability of estrogens and progestins to alter the function of the serotonin neural system at various levels provides a cellular mechanism whereby ovarian hormones can impact cognition, mood or arousal, hormone secretion, pain, and other neural circuits.


The Journal of Neuroscience | 2010

Chronic Consumption of a High-Fat Diet during Pregnancy Causes Perturbations in the Serotonergic System and Increased Anxiety-Like Behavior in Nonhuman Primate Offspring

Elinor L. Sullivan; Bernadette E. Grayson; Diana Takahashi; Nicola D. Robertson; Adriane Maier; Cynthia L. Bethea; M. Susan Smith; Kristine Coleman; Kevin L. Grove

Childhood obesity is associated with increased risk of behavioral/psychological disorders including depression, anxiety, poor learning, and attention deficient disorder. As the majority of women of child-bearing age are overweight or obese and consume a diet high in dietary fat, it is critical to examine the consequences of maternal overnutrition on the development of brain circuitry that regulates offspring behavior. Using a nonhuman primate model of diet-induced obesity, we found that maternal high-fat diet (HFD) consumption caused perturbations in the central serotonergic system of fetal offspring. In addition, female infants from HFD-fed mothers exhibited increased anxiety in response to threatening novel objects. These findings have important clinical implications as they demonstrate that exposure to maternal HFD consumption during gestation, independent of obesity, increases the risk of developing behavioral disorders such as anxiety.


Molecular Neurobiology | 1998

Ovarian steroids and serotonin neural function.

Cynthia L. Bethea; M. Pecins-Thompson; W. E. Schutzer; C. Gundlah; Z. N. Lu

The serotonin neural system originates from ten nuclei in the mid- and hindbrain regions. The cells of the rostral nuclei project to almost every area of the forebrain, including the hypothalamus, limbic regions, basal ganglia, thalamic nuclei, and cortex. The caudal nuclei project to the spinal cord and interact with numerous autonomic and sensory systems. This article reviews much of the available literature from basic research and relevant clinical research that indicates that ovarian steroid hormones, estrogens and progestins, affect the function of the serotonin neural system. Experimental results in nonhuman primates from this laboratory are contrasted with studies in rodents and humans. The sites of action of ovarian hormones on the serotonin neural system include effects within serotonin neurons as well as effects on serotonin afferent neurons and serotonin target neurons. Therefore, information on estrogen and progestin receptor-containing neurons was synthesized with information on serotonin afferent and efferent circuits. The ability of estrogens and progestins to alter the function of the serotonin neural system at various levels provides a cellular mechanism whereby ovarian hormones can impact mood, cognition, pain, and numerous other autonomic functions.


Molecular Brain Research | 1998

Regulation of serotonin re-uptake transporter mRNA expression by ovarian steroids in rhesus macaques

Melanie Pecins-Thompson; Nancy A. Brown; Cynthia L. Bethea

It has been widely hypothesized that the ovarian steroids, estrogen (E) and progesterone (P), act on serotonin neurons to modulate mood and increase prolactin secretion in women. However, information is needed on the molecular consequences of ovarian hormone action in serotonin neurons. This study examined the effect of E and P on the expression of mRNA for the serotonin re-uptake transporter (SERT) in monkeys using in situ hybridization and a 253 bp human SERT cRNA probe. Monkeys (n=5 animals/group) were ovariectomized and hysterectomized (spayed) and then untreated (control), or treated, with E for 28 days (E treated) or treated with E for 28 days and supplemented with P for the last 14 days of the E regimen (E+P treated). Densitometric analysis of autoradiographs with gray-level thresholding was performed at five levels of the dorsal and median raphe. The number of pixels exceeding background in defined areas was obtained (pixel number). The average pixel number for spayed, E- and E+P-treated groups was 22 280+/-3517, 15 227+/-1714, and 14 827+/-2042, respectively, in the combined dorsal and median raphe. In the E- and E+P-treated groups compared to the control group, there was a 32% and 33% decrease in SERT mRNA signal represented by pixel number (ANOVA, P<0.05). Hence, E- and E+P-treated groups were significantly less than the control group, but they were not different from one another. Also, there were significantly fewer SERT mRNA-positive cells in the dorsal raphe of E- and E+P-treated groups (ANOVA, P<0.001). Therefore E, with or without P, reduces SERT mRNA expression. These results suggest that the ability of P to increase prolactin secretion in E-primed monkeys does not involve an action at the level of SERT gene transcription. Hence, the mechanism by which the CNS transduces the action of P on prolactin secretion remains to be elucidated. However, these data suggest that one action of E replacement therapy in postmenopausal women may be to decrease expression of the SERT gene.


Neuroendocrinology | 1993

Ibotenic Acid Lesions in the Bed Nucleus of the Stria terminalis Attenuate Conditioned Stress-Induced Increases in Prolactin, ACTH and Corticosterone

Thackery S. Gray; Rashel A. Piechowski; Joseph M. Yracheta; Peter A. Rittenhouse; Cynthia L. Bethea; Louis D. Van de Kar

The contribution of the bed nucleus of the stria terminalis (BST) to the expression of stress-induced increases in ACTH/corticosterone, prolactin and renin secretion was assessed. Neurons in the lateral part of the BST were destroyed with bilateral injections of the cell-selective neurotoxin ibotenic acid (1.5 micrograms in 0.1 microliter of solution per side). Two weeks later, the rats were stressed using an immobilization or conditioned stress paradigm. Rats with lesions in the lateral part of the BST showed attenuated ACTH and corticosterone responses to conditioned stress. Bilateral ablation of lateral BST significantly reduced the prolactin secretory response to conditioned stress. The same lesions had no effect upon plasma increases in renin that occur in response to conditioned stress. Also, destruction of neurons in the BST did not affect immobilization-induced increases in ACTH, corticosterone, prolactin or renin. Previous studies have demonstrated that ibotenic acid lesions in the central amygdala reduce corticosterone and renin response to conditioned stress. Thus, both the BST and central amygdala are important for the adrenocortical response to conditioned stress. Neurons in the central nucleus of the amygdala are part of the circuitry that mediates renin responses to conditioned stress. Neurons in the BST are important for the full expression of prolactin responses to conditioned stress. The neuronal circuitry and stressor specificity in the mediation of prolactin, renin and ACTH/corticosterone responses are discussed.


Neuroscience | 1999

Ovarian steroid regulation of serotonin-1A autoreceptor messenger RNA expression in the dorsal raphe of rhesus macaques.

M. Pecins-Thompson; Cynthia L. Bethea

It is widely hypothesized that ovarian steroids act on serotonin neurons to modulate mood and alter neuroendocrine function in women. However, information is needed on the molecular consequences of estrogen and progesterone action in serotonin neurons. This study examined the effect of estrogen, with and without progesterone, on the expression of messenger RNA for the serotonin-1A autoreceptor in monkeys using in situ hybridization and a 432-bp serotonin-1A probe generated with polymerase chain reaction. Monkeys were spayed/ovariectomized (control; n=4), estrogen treated (28 days, n=4) and estrogen+progesterone treated (14 days estrogen+14 days estrogen+progesterone, n=4). Perfusion-fixed midbrain sections containing the dorsal raphe (10 microm) were hybridized at 60 degrees C with 35S antisense complementary RNA. After a final wash in 0.1 x standard saline citrate at 70 degrees C, sections were apposed to betamax film for four days and then emulsion fixed. Adjacent sections were immunostained for serotonin to confirm the location of the dorsal raphe. Densitometric analysis of autoradiographs with gray level thresholding was performed at five levels of the dorsal raphe. The number of pixels exceeding background in defined areas was obtained (pixel number), as well as the mean optical density. In the estrogen- and the estrogen+progesterone-treated groups compared to the control group, there was a 38% and 43% decrease in serotonin-1A messenger RNA signal, respectively, represented by pixel number (P<0.05). Mean optical density for serotonin-1A was significantly decreased by estrogen treatment (21%; P<0.05) and then further decreased with the addition of progesterone treatment (45%; P<0.01). Also, the number of positive cells and the grains/cell were counted. There were significantly fewer serotonin-1A messenger RNA-positive cells in the serotonergic neurons of the dorsal raphe in estrogen- and estrogen+progesterone-treated groups (P<0.001) than controls. There were significantly lower single-cell levels of serotonin-1A messenger RNA in serotonergic neurons of the dorsal raphe only in the estrogen+progesterone-treated group (P<0.05). These results suggest that estrogen reduces serotonin-1A gene expression and that the addition of progesterone further reduces serotonin-1A gene expression in non-human primates. If the changes in gene expression are manifested by alterations in protein expression, then, together, these actions of estrogen and progesterone could increase serotonin neurotransmission, thereby elevating mood and/or altering neuroendocrine functions.


Biological Psychiatry | 2000

Steroid regulation of tryptophan hydroxylase protein in the dorsal raphe of macaques.

Cynthia L. Bethea; Stephanie J. Mirkes; Carol A. Shively; Michael R. Adams

BACKGROUND Tryptophan hydroxylase (TPH) is the rate-limiting enzyme for the synthesis of serotonin, and serotonin is a pivotal neurotransmitter in the regulation of mood, affective behavior, pituitary hormone secretion, and numerous autonomic functions. We previously demonstrated that estradiol (E) and progesterone (P) increase TPH mRNA levels in the dorsal raphe of macaques. METHODS This study employed western blotting and densitometric quantitation to determine whether the changes observed at the level of gene expression were manifested by changes in TPH protein expression and whether modified estrogens or progestins had actions similar to the native ligands. In addition, the effect of the antiestrogen tamoxifen was examined. Ovariectomized (ovx) rhesus and cynomolgus macaques were untreated or treated with E, P, E+P, equine estrogens (EE), medroxyprogesterone (MPA), EE+MPA, or tamoxifen. The dorsal raphe region was subjected to Western analysis. RESULTS E treatment for 28 days increased TPH protein mass four to six fold over ovariectomized controls. Addition of P to the E regimen or treatment with P for 28 days after E priming did not alter TPH from E treatment alone. Treatment of ovx macaques with a low dose of P caused a two-fold increase in TPH protein. Treatment of ovariectomized macaques for 30 months with EE alone or MPA alone significantly increased TPH protein; however, unlike P, the addition of MPA to the EE regimen blocked the stimulatory effect of EE. Tamoxifen treatment significantly reduced TPH protein compared to EE and ovariectomized control animals. CONCLUSION The stimulatory effect of E and P on TPH protein in the dorsal raphe of macaques correlates with the previously observed effect at the level of mRNA expression. P had no effect on the stimulatory action of E, whereas MPA blocked the stimulatory effect of EE. Tamoxifen acted as a potent antiestrogen on TPH protein expression. If TPH protein mass influences serotonin synthesis, then these steroids will impact many autonomic systems that are regulated by serotonin.


Neuropsychopharmacology | 2002

Ovarian steroid regulation of 5-HT1A receptor binding and G protein activation in female monkeys

Nick Z. Lu; Cynthia L. Bethea

Serotonin 5-HT1A receptors play an important role in serotonin neurotransmission and mental health. We previously demonstrated that estradiol (E) and progesterone (P) decrease 5-HT1A autoreceptor mRNA levels in macaques. In this study, we questioned whether E and P regulate 5-HT1A binding and function and Gα subunit protein expression. Quantitative autoradiography for 5-HT1A receptors and G proteins using [3H]8-OH-DPAT and [35S]GTP-γ-S, respectively, was performed on brain sections of rhesus macaques from four treatment groups: ovariectomized controls (OVX), E (28 d), P (28 d), and E (28 d) plus P (the last 14 d) treated. Western blot analysis for Gα subunits was performed on raphe extracts from cynomolgus macaques that were OVX or OVX treated with equine estrogens (EE, 30 months). In the hypothalamus, E or E + P but not P alone decreased postsynaptic 5-HT1A binding sites. In the dorsal raphe nucleus (DRN), E, P, and E + P treatments decreased 5-HT1A autoreceptor binding. The Kd values for 8-OH-DPAT were the same for each treatment group. Both the basal and the R-(+)-8-OH-DPAT stimulated [35S]GTP-γ-S binding were decreased during hormone replacement whereas the coupling efficiency between the receptor and G proteins was maintained. Finally, EE treatment reduced the level of Gαi3, but not Gαi1, Gαo, and Gαz in the DRN. In conclusion, these observations suggest that ovarian hormones may increase serotonin neurotransmission, in part, by decreasing 5-HT1A autoreceptors, 5-HT1A postsynaptic receptors, and the inhibitory G proteins for intracellular signal transduction.


Neuropsychopharmacology | 2004

Effects of ovarian steroids and raloxifene on proteins that synthesize, transport, and degrade serotonin in the raphe region of macaques

Lisa J. Smith; Jessica A Henderson; Creed W. Abell; Cynthia L. Bethea

In the monkey dorsal raphe, we reported that 1-month (mo) of estrogen replacement, with or without progesterone supplementation for 14 days, significantly increased tryptophan hydroxylase-1 (TPH-1) mRNA; decreased serotonin reuptake transporter (SERT) mRNA and decreased monoamine oxidase (MAO)-A mRNA, but had no effect on MAO-B mRNA. Here, we questioned what effect would 1 or 5 mo of ovarian hormones or the selective estrogen receptor modulator (SERM), raloxifene, have on TPH protein and phosphorylation, and on protein expression of SERT, MAO-A or MAO-B? Raloxifene antagonizes estrogen in breast or uterus, but estrogen-like activities in the brain have been reported. Cytoplasmic and membrane extracts of the dorsal raphe region were processed for Western blotting. TPH, phosphoserine, SERT, MAO-A, and MAO-B were detected with specific antibodies. The optical densities of the signals were measured with NIH image and analyzed by ANOVA. Both 1 and 5 mo of estrogen, with or without progesterone, and 5 mo of raloxifene significantly increased TPH protein. Administration for 5 mo of estrogen plus progesterone and raloxifene also increased TPH phosphorylation. Estrogen, with or without progesterone, for 1 mo had no effect on SERT protein. However, 5 mo of estrogen and 5 mo of raloxifene increased SERT protein. Estrogen alone or combined with progesterone for 1 mo caused a significant reduction in MAO-A. Yet, after 5 mo of the same treatments, MAO-A was not different from spayed controls. Estrogen alone had no effect on MAO-B. However, the addition of progesterone significantly increased MAO-B. Raloxifene for 5 mo had no effect on MAO-A or MAO-B. Thus, to various extents, estrogen, progesterone, and raloxifene may increase serotonin production and transport. The expression of the degradative enzymes suggests a complex combination of gene transcription, post-transcriptional processing, and substrate feedback mechanisms.


Molecular Brain Research | 2001

Estrogen receptor beta (ERβ) mRNA and protein in serotonin neurons of macaques

Chrisana Gundlah; Nick Z. Lu; Stephanie J. Mirkes; Cynthia L. Bethea

This study used double in situ hybridization (ISH) to examine the colocalization of estrogen receptor beta (ERbeta) mRNA in serotonin neurons of rhesus macaques (Macaca mulatta). In addition, immunocytochemistry (ICC) was used to examine the expression and regulation of ERbeta protein in raphe neurons of the macaque midbrain. For double ISH, monkey specific riboprobes for ERbeta incorporating radiolabeled-UTP and a riboprobe for the human serotonin reuptake transporter (SERT) incorporating digoxigenin were applied to midbrain sections from spayed rhesus macaques. ERbeta mRNA hybridization signal was expressed in most cells containing SERT mRNA in the dorsal and median raphe and pons. There were also non-SERT neurons expressing ERbeta mRNA. In addition, ERbeta protein was detected with an affinity purified polyclonal antibody generated against a synthetic peptide corresponding to the D domain of human ERbeta conjugated to bovine serum albumin (provided by Dr. Philippa Saunders, MRC, Edinburgh). Midbrain sections containing the dorsal raphe from spayed rhesus macaques with and without hormone replacement therapy were processed for ERbeta immunostaining. ERbeta protein was detected at a similar intensity and in a similar number of cells in the dorsal raphe neurons in all treatment groups. Thus, the expression of ERbeta protein in the dorsal raphe was consistent with the expression of ERbeta mRNA. In conclusion, ERbeta mRNA is expressed by serotonin neurons and it is translated to protein. ERbeta protein, like ERbeta mRNA, is detected at similar levels in the presence or absence of ovarian hormones.

Collaboration


Dive into the Cynthia L. Bethea's collaboration.

Top Co-Authors

Avatar

Arubala P. Reddy

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Luisa Centeno

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Kenny Phu

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachel L. Sanchez

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge