Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia L. Innes is active.

Publication


Featured researches published by Cynthia L. Innes.


Nature | 2008

DNA double strand breaks activate a multi-functional genetic program in developing lymphocytes

Andrea L. Bredemeyer; Beth A. Helmink; Cynthia L. Innes; Boris Calderon; Lisa M. McGinnis; Grace K. Mahowald; Eric J. Gapud; Laura M. Walker; Jennifer B. Collins; Brian K. Weaver; Laura Mandik-Nayak; Robert D. Schreiber; Paul M. Allen; Michael J. May; Richard S. Paules; Craig H. Bassing; Barry P. Sleckman

DNA double-strand breaks are generated by genotoxic agents and by cellular endonucleases as intermediates of several important physiological processes. The cellular response to genotoxic DNA breaks includes the activation of transcriptional programs known primarily to regulate cell-cycle checkpoints and cell survival. DNA double-strand breaks are generated in all developing lymphocytes during the assembly of antigen receptor genes, a process that is essential for normal lymphocyte development. Here we show that in murine lymphocytes these physiological DNA breaks activate a broad transcriptional program. This program transcends the canonical DNA double-strand break response and includes many genes that regulate diverse cellular processes important for lymphocyte development. Moreover, the expression of several of these genes is regulated similarly in response to genotoxic DNA damage. Thus, physiological DNA double-strand breaks provide cues that can regulate cell-type-specific processes not directly involved in maintaining the integrity of the genome, and genotoxic DNA breaks could disrupt normal cellular functions by corrupting these processes.


Radiation Research | 2003

ATM-Dependent and -Independent Gene Expression Changes in Response to Oxidative Stress, Gamma Irradiation, and UV Irradiation

Alexandra N. Heinloth; Rodney E. Shackelford; Cynthia L. Innes; Lee Bennett; Leping Li; Rupesh P. Amin; Stella O. Sieber; Kristina G. Flores; Pierre R. Bushel; Richard S. Paules

Abstract Heinloth, A. N., Shackelford, R. E., Innes, C. L., Bennett, L., Li, L., Amin, R. P., Sieber, S. O., Flores, K. G., Bushel, P. R. and Paules, R. S. ATM-Dependent and -Independent Gene Expression Changes in Response to Oxidative Stress, Gamma Irradiation, and UV Irradiation. Radiat. Res. 160, 273–290 (2003). Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by progressive cerebellar degeneration, immunodeficiencies, telangiectasias, sensitivity to ionizing radiation, and high predisposition for malignancies. The ataxia telangiectasia mutated (ATM) gene encodes a protein (ATM) with serine/threonine kinase activity. DNA-double strand breaks are known to increase its kinase activity. While cells from individuals with AT are attenuated in their G1-, S- and G2-phase cell cycle checkpoint functions in response to γ irradiation and oxidative stress, their response to UV irradiation appears to be equivalent to that of wild-type cells. In this study, we investigated changes in gene expression in response to γ irradiation, oxidative stress, and UV irradiation, focusing on the dependence on ATM. Doses for all three treatments were selected that resulted in roughly an equivalent induction of a G1 checkpoint response and inhibition of progression through S phase. To investigate gene expression changes, logarithmically growing wild-type and AT dermal diploid fibroblasts were exposed to either γ radiation (5 Gy), oxidative stress (75 µM t-butyl-hydroperoxide), or UV radiation (7.5 J/m2), and RNA was harvested 6 h after treatment. Gene expression analysis was performed using the NIEHS Human ToxChip 2.0 with approximately 1900 cDNA clones representing known genes and ESTs. All three treatments resulted in distinct patterns of gene expression changes, as shown previously. ATM-dependent and ATM-independent components were detected within these patterns, as were novel indications of involvement of ATM in regulation of transcription factors such as SP1, AP1 and MTF1.


Molecular Carcinogenesis | 2003

Identification of Distinct and Common Gene Expression Changes After Oxidative Stress and Gamma and Ultraviolet Radiation

Alexandra N. Heinloth; Rodney E. Shackelford; Cynthia L. Innes; Lee Bennett; Leping Li; Rupesh P. Amin; Stella O. Sieber; Kristina G. Flores; Pierre R. Bushel; Richard S. Paules

The human genome is exposed to many different kinds of DNA‐damaging agents. While most damage is detected and repaired through complex damage recognition and repair machineries, some damage has the potential to escape these mechanisms. Unrepaired DNA damage can give rise to alterations and mutations in the genome in an individual cell, which can result in malignant transformation, especially when critical genes are deregulated. In this study, we investigated gene expression changes in response to oxidative stress, gamma (γ) radiation, and ultraviolet (UV) radiation and their potential implications in cancer development. Doses were selected for each of the three treatments, based on their ability to cause a similar G1 checkpoint induction and slow down in early S‐phase progression, as reflected by a comparable reduction in cyclin E–associated kinase activity of at least 75% in logarithmically growing human dermal diploid fibroblasts. To investigate gene expression changes, logarithmically growing dermal diploid fibroblasts were exposed to either γ radiation (5 Gy), oxidative stress (75 μM of tert‐butyl hydroperoxide (t‐butyl‐OOH)), or UV radiation (UVC) (7.5 J/m2) and RNA was harvested 6 h after treatment. Gene expression was analyzed using the NIEHS Human ToxChip 2.0 with approximately 1901 cDNA clones representing known genes and expressed sequence tags (ESTs). We were able to identify common and distinct responses in dermal diploid fibroblasts to the three different stimuli used. Within our analysis, gene expression profiles in response to γ radiation and oxidative stress appeared to be more similar than profiles expressed after UV radiation. Interestingly, equivalent cyclin E–associated kinase activity reduction with all the three treatments was associated with greater transcriptional changes after UV radiation than after γ radiation and oxidative stress. While samples treated with UV radiation displayed modulations of their mitogen activated protein kinase (MAPK) pathway, γ radiation had its major influence on cell‐cycle progression in S‐phase and mitosis. In addition, cell cultures from different individuals displayed significant differences in their gene expression responses to DNA damage. Published 2003 Wiley‐Liss, Inc.


Cancer Research | 2008

DNA Protein Kinase-Dependent G2 Checkpoint Revealed following Knockdown of Ataxia-Telangiectasia Mutated in Human Mammary Epithelial Cells

Sonnet J. H. Arlander; Bryan T. Greene; Cynthia L. Innes; Richard S. Paules

Members of the phosphatidylinositol 3-kinase-related kinase family, in particular the ataxia-telangiectasia mutated (ATM) kinase and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), regulate cellular responses to DNA double-strand breaks. Increased sensitivity to ionizing radiation (IR) in DNA-PKcs- or ATM-deficient cells emphasizes their important roles in maintaining genome stability. Furthermore, combined knockout of both kinases is synthetically lethal, suggesting functional complementarity. In the current study, using human mammary epithelial cells with ATM levels stably knocked down by >90%, we observed an IR-induced G(2) checkpoint that was only slightly attenuated. In marked contrast, this G(2) checkpoint was significantly attenuated with either DNA-PK inhibitor treatment or RNA interference knockdown of DNA-PKcs, the catalytic subunit of DNA-PK, indicating that DNA-PK contributes to the G(2) checkpoint in these cells. Furthermore, in agreement with the checkpoint attenuation, DNA-PK inhibition in ATM-knockdown cells resulted in reduced signaling of the checkpoint kinase CHK1 as evidenced by reduced CHK1 phosphorylation. Taken together, these results show a DNA-PK-dependent component to the IR-induced G(2) checkpoint, in addition to the well-defined ATM-dependent component. This may have important implications for chemotherapeutic strategies for breast cancers.


Molecular Cancer Research | 2006

ATM Requirement in Gene Expression Responses to Ionizing Radiation in Human Lymphoblasts and Fibroblasts

Cynthia L. Innes; Alexandra N. Heinloth; Kristina G. Flores; Stella O. Sieber; Paula B. Deming; Pierre R. Bushel; William K. Kaufmann; Richard S. Paules

The heritable disorder ataxia telangiectasia (AT) is caused by mutations in the AT-mutated (ATM) gene with manifestations that include predisposition to lymphoproliferative cancers and hypersensitivity to ionizing radiation (IR). We investigated gene expression changes in response to IR in human lymphoblasts and fibroblasts from seven normal and seven AT-affected individuals. Both cell types displayed ATM-dependent gene expression changes after IR, with some responses shared and some responses varying with cell type and dose. Interestingly, after 5 Gy IR, lymphoblasts displayed ATM-independent responses not seen in the fibroblasts at this dose, which likely reflect signaling through ATM-related kinases, e.g., ATR, in the absence of ATM function. (Mol Cancer Res 2006;4(3):197–207)


Oncogene | 1997

Serum starved v- mos -transformed cells are unable to appropriately downregulate cyclins and CDKs

Nelson Rhodes; Cynthia L. Innes; Friedrich Propst; Richard S. Paules

Serum deprived v-mos-transformed NIH3T3 cells are unable to enter a true quiescent state, but instead, arrest in the early G1 phase of the cell cycle. We have analysed several cell cycle regulatory proteins in these G1 arrested cells and show altered regulation in the expression and activity of certain cyclins and cyclin-dependent kinases. In particular, p34cdc2, cyclin A, cyclin D and cyclin E are not appropriately down-regulated in serum starved, G1 arrested, v-mos-transformed cells as compared with quiescent NIH3T3 cells. Furthermore, serum starved v-mos-transformed cells have elevated histone H1 kinase activity associated with cyclin A, cyclin E, p33cdk2, and p34cdc2. Using a metallothionein-inducible c-mosmu expression system, we show that c-mosmu induction in quiescent NIH3T3 cells causes elevated expression of p34cdc2. However, this induction of c-mosmu and subsequent expression of p34cdc2 was not sufficient to promote significant entry of cells into S phase. Analysis of extracts from serum starved v-H-ras, v-src, and tpr-met transformed NIH3T3 cells demonstrates that these oncogene-transformed cells also contain elevated levels of p34cdc2. We propose that the altered regulation of these critical cell cycle regulatory molecules, and specifically the inability to fully downregulate their activity, contributes significantly to neoplastic transformation and subsequent unregulated growth of tumor cells.


Cell Cycle | 2014

Depletion of ATR selectively sensitizes ATM-deficient human mammary epithelial cells to ionizing radiation and DNA-damaging agents

Yuxia Cui; Stela S. Palii; Cynthia L. Innes; Richard S. Paules

DNA damage response (DDR) to double strand breaks is coordinated by 3 phosphatidylinositol 3-kinase-related kinase (PIKK) family members: the ataxia-telangiectasia mutated kinase (ATM), the ATM and Rad3-related (ATR) kinase and the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs). ATM and ATR are central players in activating cell cycle checkpoints and function as an active barrier against genome instability and tumorigenesis in replicating cells. Loss of ATM function is frequently reported in various types of tumors, thus placing more reliance on ATR for checkpoint arrest and cell survival following DNA damage. To investigate the role of ATR in the G2/M checkpoint regulation in response to ionizing radiation (IR), particularly when ATM is deficient, cell lines deficient of ATM, ATR, or both were generated using a doxycycline-inducible lentiviral system. Our data suggests that while depletion of ATR or ATM alone in wild-type human mammary epithelial cell cultures (HME-CCs) has little effect on radiosensitivity or IR-induced G2/M checkpoint arrest, depletion of ATR in ATM-deficient cells causes synthetic lethality following IR, which correlates with severe G2/M checkpoint attenuation. ATR depletion also inhibits IR-induced autophagy, regardless of the ATM status, and enhances IR-induced apoptosis particularly when ATM is deficient. Collectively, our results clearly demonstrate that ATR function is required for the IR-induced G2/M checkpoint activation and subsequent survival of cells with ATM deficiency. The synthetic lethal interaction between ATM and ATR in response to IR supports ATR as a therapeutic target for improved anti-cancer regimens, especially in tumors with a dysfunctional ATM pathway.


Cell Cycle | 2013

Dissecting cellular responses to irradiation via targeted disruptions of the ATM-CHK1-PP2A circuit

Stela S. Palii; Yuxia Cui; Cynthia L. Innes; Richard S. Paules

Exposure of proliferating cells to genotoxic stresses activates a cascade of signaling events termed the DNA damage response (DDR). The DDR preserves genetic stability by detecting DNA lesions, activating cell cycle checkpoints and promoting DNA damage repair. The phosphoinositide 3-kinase-related kinases (PIKKs) ataxia telangiectasia-mutated (ATM), ATM and Rad 3-related kinase (ATR) and DNA-dependent protein kinase (DNA-PK) are crucial for sensing lesions and signal transduction. The checkpoint kinase 1 (CHK1) is a traditional ATR target involved in DDR and normal cell cycle progression and represents a pharmacological target for anticancer regimens. This study employed cell lines stably depleted for CHK1, ATM or both for dissecting cross-talk and compensatory effects on G₂/M checkpoint in response to ionizing radiation (IR). We show that a 90% depletion of CHK1 renders cells radiosensitive without abrogating their IR-mediated G₂/M checkpoint arrest. ATM phosphorylation is enhanced in CHK1-deficient cells compared with their wild-type counterparts. This correlates with lower nuclear abundance of the PP2A catalytic subunit in CHK1-depleted cells. Stable depletion of CHK1 in an ATM-deficient background showed only a 50% reduction from wild-type CHK1 protein expression levels and resulted in an additive attenuation of the G₂/M checkpoint response compared with the individual knockdowns. ATM inhibition and 90% CHK1 depletion abrogated the early G₂/M checkpoint and precluded the cells from mounting an efficient compensatory response to IR at later time points. Our data indicates that dual targeting of ATM and CHK1 functionalities disrupts the compensatory response to DNA damage and could be exploited for developing efficient anti-neoplastic treatments.


eLife | 2017

A type I IFN-dependent DNA damage response regulates the genetic program and inflammasome activation in macrophages

Abigail J. Morales; Javier A. Carrero; Putzer J. Hung; Anthony T. Tubbs; Jared M Andrews; Brian T. Edelson; Boris Calderon; Cynthia L. Innes; Richard S. Paules; Jacqueline E. Payton; Barry P. Sleckman

Macrophages produce genotoxic agents, such as reactive oxygen and nitrogen species, that kill invading pathogens. Here we show that these agents activate the DNA damage response (DDR) kinases ATM and DNA-PKcs through the generation of double stranded breaks (DSBs) in murine macrophage genomic DNA. In contrast to other cell types, initiation of this DDR depends on signaling from the type I interferon receptor. Once activated, ATM and DNA-PKcs regulate a genetic program with diverse immune functions and promote inflammasome activation and the production of IL-1β and IL-18. Indeed, following infection with Listeria monocytogenes, DNA-PKcs-deficient murine macrophages produce reduced levels of IL-18 and are unable to optimally stimulate IFN-γ production by NK cells. Thus, genomic DNA DSBs act as signaling intermediates in murine macrophages, regulating innate immune responses through the initiation of a type I IFN-dependent DDR. DOI: http://dx.doi.org/10.7554/eLife.24655.001


PLOS ONE | 2013

Genome-wide small RNA sequencing and gene expression analysis reveals a microRNA profile of cancer susceptibility in ATM-deficient human mammary epithelial cells.

Jill E. Hesse; Liwen Liu; Cynthia L. Innes; Yuxia Cui; Stela S. Palii; Richard S. Paules

Deficiencies in the ATM gene are the underlying cause for ataxia telangiectasia, a syndrome characterized by neurological, motor and immunological defects, and a predisposition to cancer. MicroRNAs (miRNAs) are useful tools for cancer profiling and prediction of therapeutic responses to clinical regimens. We investigated the consequences of ATM deficiency on miRNA expression and associated gene expression in normal human mammary epithelial cells (HME-CCs). We identified 81 significantly differentially expressed miRNAs in ATM-deficient HME-CCs using small RNA sequencing. Many of these have been implicated in tumorigenesis and proliferation and include down-regulated tumor suppressor miRNAs, such as hsa-miR-29c and hsa-miR-16, as well as over-expressed pro-oncogenic miRNAs, such as hsa-miR-93 and hsa-miR-221. MicroRNA changes were integrated with genome wide gene expression profiles to investigate possible miRNA targets. Predicted mRNA targets of the miRNAs significantly regulated after ATM depletion included many genes associated with cancer formation and progression, such as SOCS1 and the proto-oncogene MAF. While a number of miRNAs have been reported as altered in cancerous cells, there is little understanding as to how these small RNAs might be driving cancer formation or how they might be used as biomarkers for cancer susceptibility. This study provides preliminary data for defining miRNA profiles that may be used as prognostic or predictive biomarkers for breast cancer. Our integrated analysis of miRNA and mRNA expression allows us to gain a better understanding of the signaling involved in breast cancer predisposition and suggests a mechanism for the breast cancer-prone phenotype seen in ATM-deficient patients.

Collaboration


Dive into the Cynthia L. Innes's collaboration.

Top Co-Authors

Avatar

Richard S. Paules

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lawrence R. Boone

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Pierre R. Bushel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexandra N. Heinloth

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stela S. Palii

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stella O. Sieber

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

William K. Kaufmann

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry P. Sleckman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge