Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia Wolberger is active.

Publication


Featured researches published by Cynthia Wolberger.


Cell | 2006

SIRT4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic β Cells

Marcia C. Haigis; Raul Mostoslavsky; Kevin M. Haigis; Kamau Fahie; Danos C. Christodoulou; Andrew J. Murphy; David M. Valenzuela; George D. Yancopoulos; Margaret Karow; Gil Blander; Cynthia Wolberger; Tomas A. Prolla; Richard Weindruch; Frederick W. Alt; Leonard Guarente

Sir2 is an NAD-dependent deacetylase that connects metabolism with longevity in yeast, flies, and worms. Mammals have seven Sir2 homologs (SIRT1-7). We show that SIRT4 is a mitochondrial enzyme that uses NAD to ADP-ribosylate and downregulate glutamate dehydrogenase (GDH) activity. GDH is known to promote the metabolism of glutamate and glutamine, generating ATP, which promotes insulin secretion. Loss of SIRT4 in insulinoma cells activates GDH, thereby upregulating amino acid-stimulated insulin secretion. A similar effect is observed in pancreatic beta cells from mice deficient in SIRT4 or on the dietary regimen of calorie restriction (CR). Furthermore, GDH from SIRT4-deficient or CR mice is insensitive to phosphodiesterase, an enzyme that cleaves ADP-ribose, suggesting the absence of ADP-ribosylation. These results indicate that SIRT4 functions in beta cell mitochondria to repress the activity of GDH by ADP-ribosylation, thereby downregulating insulin secretion in response to amino acids, effects that are alleviated during CR.


Cell | 1991

Crystal structure of a MATα2 homeodomain-operator complex suggests a general model for homeodomain-DNA interactions

Cynthia Wolberger; Andrew K. Vershon; Beishan Liu; Alexander D. Johnson; Carl O. Pabo

The MAT alpha 2 homeodomain regulates the expression of cell type-specific genes in yeast. We have determined the 2.7 A resolution crystal structure of the alpha 2 homeodomain bound to a biologically relevant DNA sequence. The DNA in this complex is contacted primarily by the third of three alpha-helices, with additional contacts coming from an N-terminal arm. Comparison of the yeast alpha 2 and the Drosophila engrailed homeodomain-DNA complexes shows that the protein fold is highly conserved, despite a 3-residue insertion in alpha 2 and only 27% sequence identity between the two homeodomains. Moreover, the orientation of the recognition helix on the DNA is also conserved. This docking arrangement is maintained by side chain contacts with the DNA--primarily the sugar-phosphate backbone--that are identical in alpha 2 and engrailed. Since these residues are conserved among all homeodomains, we propose that the contacts with the DNA are also conserved and suggest a general model for homeodomain-DNA interactions.


Nature Structural & Molecular Biology | 2004

Regulated nucleosome mobility and the histone code

Michael S. Cosgrove; Jef D. Boeke; Cynthia Wolberger

Post-translational modifications of the histone tails are correlated with distinct chromatin states that regulate access to DNA. Recent proteomic analyses have revealed several new modifications in the globular nucleosome core, many of which lie at the histone-DNA interface. We interpret these modifications in light of previously published data and propose a new and testable model for how cells implement the histone code by modulating nucleosome dynamics.


Cell | 1999

Structure of a HoxB1–Pbx1 Heterodimer Bound to DNA: Role of the Hexapeptide and a Fourth Homeodomain Helix in Complex Formation

Derek E. Piper; Adrian H. Batchelor; Ching Pin Chang; Michael L. Cleary; Cynthia Wolberger

Hox homeodomain proteins are developmental regulators that determine body plan in a variety of organisms. A majority of the vertebrate Hox proteins bind DNA as heterodimers with the Pbx1 homeodomain protein. We report here the 2.35 A structure of a ternary complex containing a human HoxB1-Pbx1 heterodimer bound to DNA. Heterodimer contacts are mediated by the hexapeptide of HoxB1, which binds in a pocket in the Pbx1 protein formed in part by a three-amino acid insertion in the Pbx1 homeodomain. The Pbx1 DNA-binding domain is larger than the canonical homeodomain, containing an additional alpha helix that appears to contribute to binding of the HoxB1 hexapeptide and to stable binding of Pbx1 to DNA. The structure suggests a model for modulation of Hox DNA binding activity by Pbx1 and related proteins.


Cell | 2001

Molecular Insights into Polyubiquitin Chain Assembly: Crystal Structure of the Mms2/Ubc13 Heterodimer

Andrew P. VanDemark; Roseanne M. Hofmann; Colleen Tsui; Cecile M. Pickart; Cynthia Wolberger

While the signaling properties of ubiquitin depend on the topology of polyubiquitin chains, little is known concerning the molecular basis of specificity in chain assembly and recognition. UEV/Ubc complexes have been implicated in the assembly of Lys63-linked polyubiquitin chains that act as a novel signal in postreplicative DNA repair and I kappa B alpha kinase activation. The crystal structure of the Mms2/Ubc13 heterodimer shows the active site of Ubc13 at the intersection of two channels that are potential binding sites for the two substrate ubiquitins. Mutations that destabilize the heterodimer interface confer a marked UV sensitivity, providing direct evidence that the intact heterodimer is necessary for DNA repair. Selective mutations in the channels suggest a molecular model for specificity in the assembly of Lys63-linked polyubiquitin signals.


Molecular Cell | 2001

Recognition of Specific DNA Sequences

Colin W. Garvie; Cynthia Wolberger

Proteins that recognize specific DNA sequences play a central role in the regulation of transcription. The tremendous increase in structural information on protein-DNA complexes has uncovered a remarkable structural diversity in DNA binding folds, while at the same time revealing common themes in binding to target sites in the genome.


Nature Structural & Molecular Biology | 2006

Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation.

Michael J. Eddins; Candice M. Carlile; Kamila M Gomez; Cecile M. Pickart; Cynthia Wolberger

Lys63-linked polyubiquitin chains participate in nonproteolytic signaling pathways, including regulation of DNA damage tolerance and NF-κB activation. E2 enzymes bound to ubiquitin E2 variants (UEV) are vital in these pathways, synthesizing Lys63-linked polyubiquitin chains, but how these complexes achieve specificity for a particular lysine linkage has been unclear. We have determined the crystal structure of an Mms2–Ubc13-ubiquitin (UEV–E2-Ub) covalent intermediate with donor ubiquitin linked to the active site residue of Ubc13. In the structure, the unexpected binding of a donor ubiquitin of one Mms2–Ubc13-Ub complex to the acceptor-binding site of Mms2–Ubc13 in an adjacent complex allows us to visualize at atomic resolution the molecular determinants of acceptor-ubiquitin binding. The structure reveals the key role of Mms2 in allowing selective insertion of Lys63 into the Ubc13 active site and suggests a molecular model for polyubiquitin chain elongation.


Science | 1995

Crystal Structure of the MATa1/MATα2 Homeodomain Heterodimer Bound to DNA

Thomas Li; Martha R. Stark; Alexander D. Johnson; Cynthia Wolberger

The Saccharomyces cerevisiae MATa1 and MATα2 homeodomain proteins, which play a role in determining yeast cell type, form a heterodimer that binds DNA and represses transcription in a cell type-specific manner. Whereas the α2 and a1 proteins on their own have only modest affinity for DNA, the a1/α2 heterodimer binds DNA with high specificity and affinity. The three-dimensional crystal structure of the a1/α2 homeodomain heterodimer bound to DNA was determined at a resolution of 2.5 Å. The a1 and α2 homeo- domains bind in a head-to-tail orientation, with heterodimer contacts mediated by a 16-residue tail located carboxyl-terminal to the α2 homeodomain. This tail becomes ordered in the presence of a1, part of it forming a short amphipathic helix that packs against the a1 homeodomain between helices 1 and 2. A pronounced 60° bend is induced in the DNA, which makes possible protein-protein and protein-DNA contacts that could not take place in a straight DNA fragment. Complex formation mediated by flexible protein-recognition peptides attached to stably folded DNA binding domains may prove to be a general feature of the architecture of other classes of eukaryotic transcriptional regulators.


Nature Structural & Molecular Biology | 2014

New insights into ubiquitin E3 ligase mechanism.

Christopher E. Berndsen; Cynthia Wolberger

E3 ligases carry out the final step in the ubiquitination cascade, catalyzing transfer of ubiquitin from an E2 enzyme to form a covalent bond with a substrate lysine. Three distinct classes of E3 ligases have been identified that stimulate transfer of ubiquitin and ubiquitin-like proteins through either a direct or an indirect mechanism. Only recently have the catalytic mechanisms of E3 ligases begun to be elucidated.


Molecular Cell | 2002

Structure of a Sir2 enzyme bound to an acetylated p53 peptide

José L. Avalos; Ivana Celic; Shabazz Muhammad; Michael S. Cosgrove; Jef D. Boeke; Cynthia Wolberger

Sir2 proteins are NAD(+)-dependent protein deacetylases that play key roles in transcriptional regulation, DNA repair, and life span regulation. The structure of an archaeal Sir2 enzyme, Sir2-Af2, bound to an acetylated p53 peptide reveals that the substrate binds in a cleft in the enzyme, forming an enzyme-substrate beta sheet with two flanking strands in Sir2-Af2. The acetyl-lysine inserts into a conserved hydrophobic tunnel that contains the active site histidine. Comparison with other structures of Sir2 enzymes suggests that the apoenzyme undergoes a conformational change upon substrate binding. Based on the Sir2-Af2 substrate complex structure, mutations were made in the other A. fulgidus sirtuin, Sir2-Af1, that increased its affinity for the p53 peptide.

Collaboration


Dive into the Cynthia Wolberger's collaboration.

Top Co-Authors

Avatar

Alison E. Ringel

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael T Morgan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Xiangbin Zhang

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge