Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cyril Bontemps is active.

Publication


Featured researches published by Cyril Bontemps.


Journal of Bacteriology | 2003

Legume symbiotic nitrogen fixation by beta-proteobacteria is widespread in nature.

Wen-Ming Chen; Lionel Moulin; Cyril Bontemps; Peter Vandamme; Gilles Béna; Catherine Boivin-Masson

Following the initial discovery of two legume-nodulating Burkholderia strains (L. Moulin, A. Munive, B. Dreyfus, and C. Boivin-Masson, Nature 411:948-950, 2001), we identified as nitrogen-fixing legume symbionts at least 50 different strains of Burkholderia caribensis and Ralstonia taiwanensis, all belonging to the beta-subclass of proteobacteria, thus extending the phylogenetic diversity of the rhizobia. R. taiwanensis was found to represent 93% of the Mimosa isolates in Taiwan, indicating that beta-proteobacteria can be the specific symbionts of a legume. The nod genes of rhizobial beta-proteobacteria (beta-rhizobia) are very similar to those of rhizobia from the alpha-subclass (alpha-rhizobia), strongly supporting the hypothesis of the unique origin of common nod genes. The beta-rhizobial nod genes are located on a 0.5-Mb plasmid, together with the nifH gene, in R. taiwanensis and Burkholderia phymatum. Phylogenetic analysis of available nodA gene sequences clustered beta-rhizobial sequences in two nodA lineages intertwined with alpha-rhizobial sequences. On the other hand, the beta-rhizobia were grouped with free-living nitrogen-fixing beta-proteobacteria on the basis of the nifH phylogenetic tree. These findings suggest that beta-rhizobia evolved from diazotrophs through multiple lateral nod gene transfers.


Molecular Plant-microbe Interactions | 2011

Legume-Nodulating Betaproteobacteria: Diversity, Host Range, and Future Prospects

Prasad Gyaneshwar; Ann M. Hirsch; Lionel Moulin; Wen-Ming Chen; Geoffrey N. Elliott; Cyril Bontemps; Eduardo Gross; Janet I. Sprent; J. Peter; W. Young; Euan K. James

Rhizobia form specialized nodules on the roots of legumes (family Fabaceae) and fix nitrogen in exchange for carbon from the host plant. Although the majority of legumes form symbioses with members of genus Rhizobium and its relatives in class Alphaproteobacteria, some legumes, such as those in the large genus Mimosa, are nodulated predominantly by betaproteobacteria in the genera Burkholderia and Cupriavidus. The principal centers of diversity of these bacteria are in central Brazil and South Africa. Molecular phylogenetic studies have shown that betaproteobacteria have existed as legume symbionts for approximately 50 million years, and that, although they have a common origin, the symbiosis genes in both subclasses have evolved separately since then. Additionally, some species of genus Burkholderia, such as B. phymatum, are highly promiscuous, effectively nodulating several important legumes, including common bean (Phaseolus vulgaris). In contrast to genus Burkholderia, only one species of genus Cupriavidus (C. taiwanensis) has so far been shown to nodulate legumes. The recent availability of the genome sequences of C. taiwanensis, B. phymatum, and B. tuberum has paved the way for a more detailed analysis of the evolutionary and mechanistic differences between nodulating strains of alpha- and betaproteobacteria. Initial analyses of genome sequences have suggested that plant-associated Burkholderia spp. have lower G+C contents than Burkholderia spp. that are opportunistic human pathogens, thus supporting previous suggestions that the plant- and human-associated groups of Burkholderia actually belong in separate genera.


Genome Research | 2008

Genome sequence of the β-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia

Claire Amadou; Géraldine Pascal; Sophie Mangenot; Michelle Glew; Cyril Bontemps; Delphine Capela; Sébastien Carrère; Stéphane Cruveiller; Carole Dossat; Aurélie Lajus; Marta Marchetti; Véréna Poinsot; Zoé Rouy; Bertrand Servin; Maged Saad; Chantal Schenowitz; Valérie Barbe; Jacques Batut; Claudine Médigue; Catherine Masson-Boivin

We report the first complete genome sequence of a beta-proteobacterial nitrogen-fixing symbiont of legumes, Cupriavidus taiwanensis LMG19424. The genome consists of two chromosomes of size 3.42 Mb and 2.50 Mb, and a large symbiotic plasmid of 0.56 Mb. The C. taiwanensis genome displays an unexpected high similarity with the genome of the saprophytic bacterium C. eutrophus H16, despite being 0.94 Mb smaller. Both organisms harbor two chromosomes with large regions of synteny interspersed by specific regions. In contrast, the two species host highly divergent plasmids, with the consequence that C. taiwanensis is symbiotically proficient and less metabolically versatile. Altogether, specific regions in C. taiwanensis compared with C. eutrophus cover 1.02 Mb and are enriched in genes associated with symbiosis or virulence in other bacteria. C. taiwanensis reveals characteristics of a minimal rhizobium, including the most compact (35-kb) symbiotic island (nod and nif) identified so far in any rhizobium. The atypical phylogenetic position of C. taiwanensis allowed insightful comparative genomics of all available rhizobium genomes. We did not find any gene that was both common and specific to all rhizobia, thus suggesting that a unique shared genetic strategy does not support symbiosis of rhizobia with legumes. Instead, phylodistribution analysis of more than 200 Sinorhizobium meliloti known symbiotic genes indicated large and complex variations of their occurrence in rhizobia and non-rhizobia. This led us to devise an in silico method to extract genes preferentially associated with rhizobia. We discuss how the novel genes we have identified may contribute to symbiotic adaptation.


Molecular Ecology | 2010

Burkholderia species are ancient symbionts of legumes

Cyril Bontemps; Geoffrey N. Elliott; Marcelo F. Simon; Fábio Bueno dos Reis Junior; Eduardo Gross; Rebecca C. Lawton; Nicolau Elias Neto; M. F. Loureiro; Sergio Miana de Faria; Janet I. Sprent; Euan K. James; J. Peter W. Young

Burkholderia has only recently been recognized as a potential nitrogen-fixing symbiont of legumes, but we find that the origins of symbiosis in Burkholderia are much deeper than previously suspected. We sampled 143 symbionts from 47 native species of Mimosa across 1800 km in central Brazil and found that 98% were Burkholderia. Gene sequences defined seven distinct and divergent species complexes within the genus Burkholderia. The symbiosis-related genes formed deep Burkholderia-specific clades, each specific to a species complex, implying that these genes diverged over a long period within Burkholderia without substantial horizontal gene transfer between species complexes.


New Phytologist | 2010

Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil

Fábio Bueno dos Reis; Marcelo F. Simon; Eduardo Gross; Robert M. Boddey; Geoffrey N. Elliott; Nicolau Elias Neto; M. de Fatima Loureiro; Luciano Paganucci de Queiroz; Maria Rita Scotti; Wen-Ming Chen; Agneta Norén; Maria C. Rubio; Sergio Miana de Faria; Cyril Bontemps; Silvia Regina Goi; J. Peter W. Young; Janet I. Sprent; Euan K. James

*An extensive survey of nodulation in the legume genus Mimosa was undertaken in two major biomes in Brazil, the Cerrado and the Caatinga, in both of which there are high degrees of endemicity of the genus. *Nodules were collected from 67 of the 70 Mimosa spp. found. Thirteen of the species were newly reported as nodulating. Nodules were examined by light and electron microscopy, and all except for M. gatesiae had a structure typical of effective Mimosa nodules. The endosymbiotic bacteria in nodules from all of the Mimosa spp. were identified as Burkholderia via immunolabelling with an antibody against Burkholderia phymatum STM815. *Twenty of the 23 Mimosa nodules tested were shown to contain nitrogenase by immunolabelling with an antibody to the nitrogenase Fe- (nifH) protein, and using the delta(15)N ((15)N natural abundance) technique, contributions by biological N(2) fixation of up to 60% of total plant N were calculated for Caatinga Mimosa spp. *It is concluded that nodulation in Mimosa is a generic character, and that the preferred symbionts of Brazilian species are Burkholderia. This is the first study to demonstrate N(2) fixation by beta-rhizobial symbioses in the field.


Environmental Microbiology | 2009

Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N‐limited conditions

Geoffrey N. Elliott; Jui-Hsing Chou; Wen-Ming Chen; Guido V. Bloemberg; Cyril Bontemps; Esperanza Martínez-Romero; Encarna Velázquez; J. Peter W. Young; Janet I. Sprent; Euan K. James

Bacteria isolated from Mimosa nodules in Taiwan, Papua New Guinea, Mexico and Puerto Rico were identified as belonging to either the alpha- or beta-proteobacteria. The beta-proteobacterial Burkholderia and Cupriavidus strains formed effective symbioses with the common invasive species Mimosa diplotricha, M. pigra and M. pudica, but the alpha-proteobacterial Rhizobium etli and R. tropici strains produced a range of symbiotic phenotypes from no nodulation through ineffective to effective nodulation, depending on Mimosa species. Competition studies were performed between three of the alpha-proteobacteria (R. etli TJ167, R. tropici NGR181 and UPRM8021) and two of the beta-rhizobial symbionts (Burkholderia mimosarum PAS44 and Cupriavidus taiwanensis LMG19424) for nodulation of these invasive Mimosa species. Under flooded conditions, B. mimosarum PAS44 out-competed LMG19424 and all three alpha-proteobacteria to the point of exclusion. This advantage was not explained by initial inoculum levels, rates of bacterial growth, rhizobia-rhizobia growth inhibition or individual nodulation rate. However, the competitive domination of PAS44 over LMG19424 was reduced in the presence of nitrate for all three plant hosts. The largest significant effect was for M. pudica, in which LMG19424 formed 57% of the nodules in the presence of 0.5 mM potassium nitrate. In this host, ammonium also had a similar, but lesser, effect. Comparable results were also found using an N-containing soil mixture, and environmental N levels are therefore suggested as a factor in the competitive success of the bacterial symbiont in vivo.


International Journal of Systematic and Evolutionary Microbiology | 2008

Burkholderia sabiae sp. nov., isolated from root nodules of Mimosa caesalpiniifolia

Wen-Ming Chen; Sergio Miana de Faria; Jui-Hsing Chou; Euan K. James; Geoffrey N. Elliott; Janet I. Sprent; Cyril Bontemps; J. Peter; W. Young; Peter Vandamme

Two rhizobial strains, Br3407(T) and Br3405, were isolated from nitrogen-fixing nodules on the roots of Mimosa caesalpiniifolia, a legume tree native to Brazil. On the basis of 16S rRNA gene sequence similarities, both strains were shown previously to belong to the genus Burkholderia. A polyphasic approach, including DNA-DNA hybridizations, pulsed-field gel electrophoresis of whole-genome DNA profiles, whole-cell protein analyses, fatty acid methyl ester analysis and extensive biochemical characterization, was used to clarify the taxonomic position of these strains further; the strains are here classified within a novel species, for which the name Burkholderia sabiae sp. nov. is proposed. The type strain is strain Br3407(T) (=LMG 24235(T) =BCRC 17587(T)).


International Journal of Systematic and Evolutionary Microbiology | 2013

Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp.

Shih-Yi Sheu; Jui-Hsing Chou; Cyril Bontemps; Geoffrey N. Elliott; Eduardo Gross; F. B. dos Reis Junior; Rémy Melkonian; Lionel Moulin; Euan K. James; Janet I. Sprent; J. P. W. Young; Wen-Ming Chen

Five strains, JPY461(T), JPY359, JPY389, DPU-3 and STM4206 were isolated from nitrogen-fixing nodules on the roots of Mimosa spp. and their taxonomic positions were investigated using a polyphasic approach. All five strains grew at 15-40 °C (optimum, 30-37 °C), at pH 4.0-8.0 (optimum, pH 6.0-7.0) and with 0-1 % (w/v) NaCl [optimum, 0 % (w/v)]. On the basis of 16S rRNA gene sequence analysis, a representative strain (JPY461(T)) showed 97.2 % sequence similarity to the closest related species Burkholderia acidipaludis SA33(T), a similarity of 97.2 % to Burkholderia terrae KMY02(T), 97.1 % to Burkholderia phymatum STM815(T) and 97.1 % to Burkholderia hospita LMG 20598(T). The predominant fatty acids of the five novel strains were summed feature 2 (comprising C(16 : 1) iso I and/or C(14 : 0) 3-OH), summed feature 3 (comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c), C(16 : 0) , C(16 : 0) 3-OH, C(17 : 0) cyclo, C(18 : 1)ω7c and C(19 : 0) cyclo ω8c. The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 63.0-65.0 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, an unidentified aminolipid and several unidentified phospholipids. The DNA-DNA relatedness of the novel strain with respect to recognized species of the genus Burkholderia was less than 54 %. On the basis of 16S rRNA and recA gene sequence similarities, chemotaxonomic and phenotypic data, the five strains represent a novel species in the genus Burkholderia, for which the name Burkholderia diazotrophica sp. nov. is proposed with the type strain, JPY461(T) ( = LMG 26031(T) = BCRC 80259(T) = KCTC 23308(T)).


International Journal of Systematic and Evolutionary Microbiology | 2012

Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil

Shih-Yi Sheu; Jui-Hsing Chou; Cyril Bontemps; Geoffrey N. Elliott; Eduardo Gross; Euan K. James; Janet I. Sprent; J. P. W. Young; Wen-Ming Chen

Four strains, designated JPY-345(T), JPY-347, JPY-366 and JPY-581, were isolated from nitrogen-fixing nodules on the roots of two species of Mimosa, Mimosa cordistipula and Mimosa misera, that are native to North East Brazil, and their taxonomic positions were investigated by using a polyphasic approach. All four strains grew at 15-43 °C (optimum 35 °C), at pH 4-7 (optimum pH 5) and with 0-2 % (w/v) NaCl (optimum 0 % NaCl). On the basis of 16S rRNA gene sequence analysis, strain JPY-345(T) showed 97.3 % sequence similarity to the closest related species Burkholderia soli GP25-8(T), 97.3 % sequence similarity to Burkholderia caryophylli ATCC25418(T) and 97.1 % sequence similarity to Burkholderia kururiensis KP23(T). The predominant fatty acids of the strains were C(18 : 1)ω7c (36.1 %), C(16 : 0) (19.8 %) and summed feature 3, comprising C(16 : 1)ω7c and/or C(16 : 1)ω6c (11.5 %). The major isoprenoid quinone was Q-8 and the DNA G+C content of the strains was 64.2-65.7 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized aminophospholipids and phospholipids. DNA-DNA hybridizations between the novel strain and recognized species of the genus Burkholderia yielded relatedness values of <51.8 %. On the basis of 16S rRNA and recA gene sequence similarities and chemotaxonomic and phenotypic data, the four strains represent a novel species in the genus Burkholderia, for which the name Burkholderia symbiotica sp. nov. is proposed. The type strain is JPY-345(T) (= LMG 26032(T) = BCRC 80258(T) = KCTC 23309(T)).


Applied and Environmental Microbiology | 2001

Characterization of a Novel Type II Restriction-Modification System, Sth368I, Encoded by the Integrative Element ICESt1 of Streptococcus thermophilus CNRZ368

Vincent Burrus; Cyril Bontemps; Bernard Decaris; Gérard Guédon

ABSTRACT A novel type II restriction and modification (R-M) system,Sth368I, which confers resistance to φST84, was found inStreptococcus thermophilus CNRZ368 but not in the very closely related strain A054. Partial sequencing of the integrative conjugative element ICESt1, carried by S. thermophilus CNRZ368 but not by A054, revealed a divergent cluster of two genes, sth368IR and sth368IM. The protein sequence encoded by sth368IR is related to the type II endonucleases R.LlaKR2I and R.Sau3AI, which recognize and cleave the sequence 5′-GATC-3′. The protein sequence encoded by sth368IM is very similar to numerous type II 5-methylcytosine methyltransferases, including M.LlaKR2I and M.Sau3AI. Cell extracts of CNRZ368 but not A054 were found to cleave at the GATC site. Furthermore, the C residue of the sequence 5′-GATC-3′ was found to be methylated in CNRZ368 but not in A054. Cloning and integration of a copy of sth368IR and sth368IMin the A054 chromosome confers on this strain phenotypes similar to those of CNRZ368, i.e., phage resistance, endonuclease activity of cell extracts, and methylation of the sequence 5′-GATC-3′. Disruption of sth368IR removes resistance and restriction activity. We conclude that ICESt1 encodes an R-M system, Sth368I, which recognizes the sequence 5′-GATC-3′ and is related to the Sau3AI and LlaKR2I restriction systems.

Collaboration


Dive into the Cyril Bontemps's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wen-Ming Chen

National Kaohsiung Marine University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lionel Moulin

Arts et Métiers ParisTech

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jui-Hsing Chou

National Chung Hsing University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge