Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cyril Demarche is active.

Publication


Featured researches published by Cyril Demarche.


arXiv: Number Theory | 2011

Le défaut d’approximation forte dans les groupes linéaires connexes

Cyril Demarche

Let G be a connected linear algebraic group over a number field k. We establish an exact sequence describing the closure of the group G(k) of rational points of G in the group of adelic points of G. This exact sequence describes the defect of strong approximation on G in terms of the algebraic Brauer group of G. In particular, we deduce from those results that the integral Brauer-Manin obstruction on a torsor under the group G is the only obstruction to the existence of an integral point on this torsor. We also obtain a non-abelian Poitou-Tate exact sequence for the Galois cohomology of the linear group G. The main ingredients in the proof of those results are the local and global duality theorems for complexes of k-tori of length two and the abelianization maps in Galois cohomology introduced by Borovoi.


Commentarii Mathematici Helvetici | 2013

Manin obstruction to strong approximation for homogeneous spaces

Mikhail Borovoi; Cyril Demarche


Algebra & Number Theory | 2009

Obstruction de descente et obstruction de Brauer–Manin étale

Cyril Demarche


arXiv: Algebraic Geometry | 2013

Le groupe fondamental d'un espace homog\`ene d'un groupe alg\'ebrique lin\'eaire

Mikhail Borovoi; Cyril Demarche


Annales Scientifiques De L Ecole Normale Superieure | 2013

Complexes de groupes de type multiplicatif et groupe de Brauer non ramifié des espaces homogènes

Mikhail Borovoi; Cyril Demarche; David Harari


arXiv: Number Theory | 2009

Th\'eor\`emes de dualit\'e pour les complexes de tores

Cyril Demarche


arXiv: Number Theory | 2018

Artin-Mazur-Milne duality for fppf cohomology.

Cyril Demarche; David Harari


arXiv: Number Theory | 2018

Artin-Mazur-Milne duality Theorem for fppf cohomology

Cyril Demarche; David Harari


arXiv: Algebraic Geometry | 2017

Le principe de Hasse pour les espaces homog\`enes : r\'eduction au cas des stabilisateurs finis (The Hasse principle for homogeneous spaces: reduction to the case of finite stabilizers)

Cyril Demarche; Giancarlo Lucchini Arteche


arXiv: Algebraic Geometry | 2017

Splitting families in Galois cohomology

Cyril Demarche; Mathieu Florence

Collaboration


Dive into the Cyril Demarche's collaboration.

Top Co-Authors

Avatar

David Harari

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge