Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cyril F. Bourgeois is active.

Publication


Featured researches published by Cyril F. Bourgeois.


RNA | 1999

The splicing factors 9G8 and SRp20 transactivate splicing through different and specific enhancers

Yvon Cavaloc; Cyril F. Bourgeois; Liliane Kister; James Stévenin

The activity of the SR protein family of splicing factors in constitutive or alternative splicing requires direct interactions with the pre-mRNA substrate. Thus it is important to define the high affinity targets of the various SR species and to evaluate their ability to discriminate between defined RNA targets. We have analyzed the binding specificity of the 30-kDa SR protein 9G8, which contains a zinc knuckle in addition to the RNA binding domain (RBD). Using a SELEX approach, we demonstrate that 9G8 selects RNA sequences formed by GAC triplets, whereas a mutated zinc knuckle variant selects different RNA sequences, centered around a (A/U)C(A/U)(A/U)C motif, indicating that the zinc knuckle is involved in the RNA recognition specificity of 9G8. In contrast, SC35 selects sequences composed of pyrimidine or purine-rich motifs. Analyses of RNA-protein interactions with purified recombinant 30-kDa SR proteins or in nuclear extracts, by means of UV crosslinking and immunoprecipitation, demonstrate that 9G8, SC35, and ASF/SF2 recognize their specific RNA targets with high specificity. Interestingly, the RNA sequences selected by the mutated zinc knuckle 9G8 variant are efficiently recognized by SRp20, in agreement with the fact that the RBD of 9G8 and SRp20 are similar. Finally, we demonstrate the ability of 9G8 and of its zinc knuckle variant, or SRp20, to act as efficient splicing transactivators through their specific RNA targets. Our results provide the first evidence for cooperation between an RBD and a zinc knuckle in defining the specificity of an RNA binding domain.


Molecular and Cellular Biology | 2000

The RNA-Binding Protein TIA-1 Is a Novel Mammalian Splicing Regulator Acting through Intron Sequences Adjacent to a 5′ Splice Site

Fabienne Del Gatto-Konczak; Cyril F. Bourgeois; Caroline Le Guiner; Liliane Kister; Marie-Claude Gesnel; James Stévenin; Richard Breathnach

ABSTRACT Splicing of the K-SAM alternative exon of the fibroblast growth factor receptor 2 gene is heavily dependent on the U-rich sequence IAS1 lying immediately downstream from its 5′ splice site. We show that IAS1 can activate the use of several heterologous 5′ splice sites in vitro. Addition of the RNA-binding protein TIA-1 to splicing extracts preferentially enhances the use of 5′ splice sites linked to IAS1. TIA-1 can provoke a switch to use of such sites on pre-mRNAs with competing 5′ splice sites, only one of which is adjacent to IAS1. Using a combination of UV cross-linking and specific immunoprecipitation steps, we show that TIA-1 binds to IAS1 in cell extracts. This binding is stronger if IAS1 is adjacent to a 5′ splice site and is U1 snRNP dependent. Overexpression of TIA-1 in cultured cells activates K-SAM exon splicing in an IAS1-dependent manner. If IAS1 is replaced with a bacteriophage MS2 operator, splicing of the K-SAM exon can no longer be activated by TIA-1. Splicing can, however, be activated by a TIA-1–MS2 coat protein fusion, provided that the operator is close to the 5′ splice site. Our results identify TIA-1 as a novel splicing regulator, which acts by binding to intron sequences immediately downstream from a 5′ splice site in a U1 snRNP-dependent fashion. TIA-1 is distantly related to the yeast U1 snRNP protein Nam8p, and the functional similarities between the two proteins are discussed.


Progress in Nucleic Acid Research and Molecular Biology | 2004

Broad specificity of SR (serine/arginine) proteins in the regulation of alternative splicing of pre-messenger RNA.

Cyril F. Bourgeois; Fabrice Lejeune; James Stévenin

Alternative splicing of pre-messenger RNA (pre-mRNA) is a highly regulated process that allows expansion of the potential of expression of the genome in higher eukaryotes and involves many factors. Among them, the family of the serine- and arginine-rich proteins (SR proteins) plays a pivotal role: it has essential functions during spliceosome assembly and also interacts with RNA regulatory sequences on the pre-mRNA as well as with multiple cofactors. Collectively, SR proteins, because of their capacity to recognize multiple RNA sequences with a broad specificity, are at the heart of the regulation pathways that lead to the choice of alternative splice sites. Moreover, a growing body of evidence shows that the mechanisms of splicing regulation are not limited to the basic involvement of cis- and trans-acting factors at the pre-mRNA level, but result from intricate pathways, initiated sometimes by stimuli that are external to the cell and integrate SR proteins (and other factors) within an extremely sophisticated network of molecular machines associated with one another. This review focuses on the molecular aspects of the functions of SR proteins. In particular, we discuss the different ways in which SR proteins manage to achieve a high level of specificity in splicing regulation, even though they are also involved in the constitutive reaction.


The EMBO Journal | 2006

Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency

Young Kyeung Kim; Cyril F. Bourgeois; Richard Pearson; Mudit Tyagi; Michelle J. West; Julian Wong; Shwu Yuan Wu; Cheng Ming Chiang; Jonathan Karn

Latently infected cells rapidly initiate HIV transcription after exposure to signals that induce NF‐κB. To investigate the role of TFIIH during HIV reactivation in vivo, we developed a population of Jurkat cells containing integrated, but transcriptionally silent, HIV proviruses. Surprisingly, the HIV promoter in unactivated Jurkat T cells is partially occupied and carries Mediator containing the CDK8 repressive module, TFIID and RNAP II that is hypophosphorylated and confined to the promoter region. Significantly, the promoter is devoid of TFIIH. Upon stimulation of the cells by TNF‐α, NF‐κB and TFIIH are rapidly recruited to the promoter together with additional Mediator and RNAP II, but CDK8 is lost. Detailed time courses show that the levels of TFIIH at the promoter fluctuate in parallel with NF‐κB recruitment to the promoter. Similarly, recombinant p65 activates HIV transcription in vitro and stimulates phosphorylation of the RNAP II CTD by the CDK7 kinase module of TFIIH. We conclude that the recruitment and activation of TFIIH represents a rate‐limiting step for the emergence of HIV from latency.


Molecular and Cellular Biology | 1999

Identification of a Bidirectional Splicing Enhancer: Differential Involvement of SR Proteins in 5′ or 3′ Splice Site Activation

Cyril F. Bourgeois; Michel Popielarz; Georges Hildwein; James Stévenin

ABSTRACT The adenovirus E1A pre-mRNA undergoes alternative splicing whose modulation occurs during infection, through the use of three different 5′ splice sites and of one major or one minor 3′ splice site. Although this pre-mRNA has been extensively used as a model to compare the transactivation properties of SR proteins, no cis-acting element has been identified in the transcript sequence. Here we describe the identification and the characterization of a purine-rich splicing enhancer, located just upstream of the 12S 5′ splice site, which is formed from two contiguous 9-nucleotide (nt) purine motifs (Pu1 and Pu2). We demonstrate that this sequence is a bidirectional splicing enhancer (BSE) in vivo and in vitro, because it activates both the downstream 12S 5′ splice site through the Pu1 motif and the upstream 216-nt intervening sequence (IVS) 3′ splice site through both motifs. UV cross-linking and immunoprecipitation experiments indicate that the BSE interacts with several SR proteins specifically, among them 9G8 and ASF/SF2, which bind preferentially to the Pu1 and Pu2 motifs, respectively. Interestingly, we show by in vitro complementation assays that SR proteins have distinct transactivatory properties. In particular, 9G8, but not ASF/SF2 or SC35, is able to strongly activate the recognition of the 12S 5′ splice site in a BSE-dependent manner in wild-type E1A or in a heterologous context, whereas ASF/SF2 or SC35, but not 9G8, activates the upstream 216-nt IVS splicing. Thus, our results identify a novel exonic BSE and the SR proteins which are involved in its differential activity.


EMBO Reports | 2007

The testis-specific human protein RBMY recognizes RNA through a novel mode of interaction

Lenka Skrisovska; Cyril F. Bourgeois; Richard Štefl; Sushma-Nagaraja Grellscheid; Liliane Kister; Philipp Wenter; David J. Elliott; James Stévenin; Frédéric H.-T. Allain

The RBMY (RNA‐binding motif gene on Y chromosome) protein encoded by the human Y chromosome is important for normal sperm development. Although its precise molecular RNA targets are unknown at present, it is suggested that human RBMY (hRBMY) participates in splicing in the testis. Using systematic evolution of ligands by exponential enrichment, we found that RNA stem–loops capped by a CA/UCAA pentaloop are high‐affinity binding targets for hRBMY. Subsequent nuclear magnetic resonance structural determination of the hRBMY RNA recognition motif (RRM) in complex with a high‐affinity target showed two distinct modes of RNA recognition. First, the RRM β‐sheet surface binds to the RNA loop in a sequence‐specific fashion. Second, the β2–β3 loop of the hRBMY inserts into the major groove of the RNA stem. The first binding mode might be conserved in the paralogous protein heterogeneous nuclear RNP G, whereas the second mode of binding is found only in hRBMY. This structural difference could be at the origin of the function of RBMY in spermatogenesis.


PLOS Genetics | 2011

Identification of evolutionarily conserved exons as regulated targets for the splicing activator Tra2β in development

Sushma-Nagaraja Grellscheid; Caroline Dalgliesh; Markus Storbeck; Andrew Best; Yilei Liu; Miriam Jakubik; Ylva Mende; Ingrid Ehrmann; Tomaz Curk; Kristina Rossbach; Cyril F. Bourgeois; James Stévenin; David Grellscheid; Michael S. Jackson; Brunhilde Wirth; David J. Elliott

Alternative splicing amplifies the information content of the genome, creating multiple mRNA isoforms from single genes. The evolutionarily conserved splicing activator Tra2β (Sfrs10) is essential for mouse embryogenesis and implicated in spermatogenesis. Here we find that Tra2β is up-regulated as the mitotic stem cell containing population of male germ cells differentiate into meiotic and post-meiotic cells. Using CLIP coupled to deep sequencing, we found that Tra2β binds a high frequency of exons and identified specific G/A rich motifs as frequent targets. Significantly, for the first time we have analysed the splicing effect of Sfrs10 depletion in vivo by generating a conditional neuronal-specific Sfrs10 knock-out mouse (Sfrs10fl/fl; Nestin-Cretg/+). This mouse has defects in brain development and allowed correlation of genuine physiologically Tra2β regulated exons. These belonged to a novel class which were longer than average size and importantly needed multiple cooperative Tra2β binding sites for efficient splicing activation, thus explaining the observed splicing defects in the knockout mice. Regulated exons included a cassette exon which produces a meiotic isoform of the Nasp histone chaperone that helps monitor DNA double-strand breaks. We also found a previously uncharacterised poison exon identifying a new pathway of feedback control between vertebrate Tra2 proteins. Both Nasp-T and the Tra2a poison exon are evolutionarily conserved, suggesting they might control fundamental developmental processes. Tra2β protein isoforms lacking the RRM were able to activate specific target exons indicating an additional functional role as a splicing co-activator. Significantly the N-terminal RS1 domain conserved between flies and humans was essential for the splicing activator function of Tra2β. Versions of Tra2β lacking this N-terminal RS1 domain potently repressed the same target exons activated by full-length Tra2β protein.


Nucleic Acids Research | 2010

Antagonistic factors control the unproductive splicing of SC35 terminal intron

Natacha Dreumont; Sara Hardy; Isabelle Behm-Ansmant; Liliane Kister; Christiane Branlant; James Stévenin; Cyril F. Bourgeois

Alternative splicing is regulated in part by variations in the relative concentrations of a variety of factors, including serine/arginine-rich (SR) proteins. The SR protein SC35 self-regulates its expression by stimulating unproductive splicing events in the 3′ untranslated region of its own pre-mRNA. Using various minigene constructs containing the terminal retained intron and flanking exons, we identified in the highly conserved last exon a number of exonic splicing enhancer elements responding specifically to SC35, and showed an inverse correlation between affinity of SC35 and enhancer strength. The enhancer region, which is included in a long stem loop, also contains repressor elements, and is recognized by other RNA-binding proteins, notably hnRNP H protein and TAR DNA binding protein (TDP-43). Finally, in vitro and in cellulo experiments indicated that hnRNP H and TDP-43 antagonize the binding of SC35 to the terminal exon and specifically repress the use of SC35 terminal 3′ splice site. Our study provides new information about the molecular mechanisms of SC35-mediated splicing activation. It also highlights the existence of a complex network of self- and cross-regulatory mechanisms between splicing regulators, which controls their homeostasis and offers many ways of modulating their concentration in response to the cellular environment.


Journal of Cell Science | 2007

Alternative RNA splicing complexes containing the scaffold attachment factor SAFB2

Kate A. Sergeant; Cyril F. Bourgeois; Caroline Dalgliesh; Julian P. Venables; James Stévenin; David J. Elliott

The scaffold attachment factor SAFB1 and its recently discovered homologue SAFB2 might provide an important link between pre-mRNA splicing, intracellular signalling and transcription. Using novel mono-specific antisera, we found endogenous SAFB2 protein has a different spatial distribution from SAFB1 within the nucleus where it is found in much larger nuclear complexes (up to 670 kDa in size), and a distinct pattern of expression in adult human testis. By contrast, SAFB1 protein predominantly exists either as smaller complexes or as a monomeric protein. Our results suggest stable core complexes containing components comprised of SAFB1, SAFB2 and the RNA binding proteins Sam68 and hnRNPG exist in parallel with free SAFB1 protein. We found that SAFB2 protein, like SAFB1, acts as a negative regulator of a tra2β variable exon. Despite showing an involvement in splicing, we detected no stable interaction between SAFB proteins and SR or SR-related splicing regulators, although these were also found in stable higher molecular mass complexes. Each of the detected alternative splicing regulator complexes exists independently of intact nucleic acids, suggesting they might be pre-assembled and recruited to nascent transcripts as modules to facilitate alternative splicing, and/or they represent nuclear storage compartments from which active proteins are recruited.


PLOS Genetics | 2009

The germ cell nuclear proteins hnRNP G-T and RBMY activate a testis-specific exon.

Yilei Liu; Cyril F. Bourgeois; Shao-Chen Pang; Marek Kudla; Natacha Dreumont; Liliane Kister; Yong-Hua Sun; James Stévenin; David J. Elliott

The human testis has almost as high a frequency of alternative splicing events as brain. While not as extensively studied as brain, a few candidate testis-specific splicing regulator proteins have been identified, including the nuclear RNA binding proteins RBMY and hnRNP G-T, which are germ cell-specific versions of the somatically expressed hnRNP G protein and are highly conserved in mammals. The splicing activator protein Tra2β is also highly expressed in the testis and physically interacts with these hnRNP G family proteins. In this study, we identified a novel testis-specific cassette exon TLE4-T within intron 6 of the human transducing-like enhancer of split 4 (TLE4) gene which makes a more transcriptionally repressive TLE4 protein isoform. TLE4-T splicing is normally repressed in somatic cells because of a weak 5′ splice site and surrounding splicing-repressive intronic regions. TLE4-T RNA pulls down Tra2β and hnRNP G proteins which activate its inclusion. The germ cell-specific RBMY and hnRNP G-T proteins were more efficient in stimulating TLE4-T incorporation than somatically expressed hnRNP G protein. Tra2b bound moderately to TLE4-T RNA, but more strongly to upstream sites to potently activate an alternative 3′ splice site normally weakly selected in the testis. Co-expression of Tra2β with either hnRNP G-T or RBMY re-established the normal testis physiological splicing pattern of this exon. Although they can directly bind pre-mRNA sequences around the TLE4-T exon, RBMY and hnRNP G-T function as efficient germ cell-specific splicing co-activators of TLE4-T. Our study indicates a delicate balance between the activity of positive and negative splicing regulators combinatorially controls physiological splicing inclusion of exon TLE4-T and leads to modulation of signalling pathways in the testis. In addition, we identified a high-affinity binding site for hnRNP G-T protein, showing it is also a sequence-specific RNA binding protein.

Collaboration


Dive into the Cyril F. Bourgeois's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Young Kyeung Kim

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Albrecht Klink

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Karn

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge