Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cyrill Bussy is active.

Publication


Featured researches published by Cyrill Bussy.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing

Khuloud T. Al-Jamal; Lisa Gherardini; Giuseppe Bardi; Antonio Nunes; Chang Guo; Cyrill Bussy; M. Antonia Herrero; Alberto Bianco; Maurizio Prato; Kostas Kostarelos; Tommaso Pizzorusso

Stroke is the second cause of death worldwide with ischemic stroke accounting for 80% of all stroke insults. Caspase-3 activation contributes to brain tissue loss and downstream biochemical events that lead to programmed cell death after traumatic brain injury. Alleviation of symptoms following ischemic neuronal injury can be potentially achieved by either genetic disruption or pharmacological inhibition of caspases. Here, we studied whether silencing of Caspase-3 using carbon nanotube-mediated in vivo RNA interference (RNAi) could offer a therapeutic opportunity against stroke. Effective delivery of siRNA directly to the CNS has been shown to normalize phenotypes in animal models of several neurological diseases. It is shown here that peri-lesional stereotactic administration of a Caspase-3 siRNA (siCas 3) delivered by functionalized carbon nanotubes (f-CNT) reduced neurodegeneration and promoted functional preservation before and after focal ischemic damage of the rodent motor cortex using an endothelin-1 induced stroke model. These observations illustrate the opportunity offered by carbon nanotube-mediated siRNA delivery and gene silencing of neuronal tissue applicable to a variety of different neuropathological conditions where intervention at well localized brain foci may offer therapeutic and functional benefits.


Journal of Toxicology and Environmental Health | 2008

Adverse Effects of Industrial Multiwalled Carbon Nanotubes on Human Pulmonary Cells

Lyes Tabet; Cyrill Bussy; Nadia Amara; Ari Setyan; Alain Grodet; Michel J. Rossi; Jean Claude Pairon; Jorge Boczkowski; Sophie Lanone

The aim of this study was to evaluate adverse effects of multiwalled carbon nanotubes (MWCNT), produced for industrial purposes, on the human epithelial cell line A549. MWCNT were dispersed in dipalmitoyl lecithin (DPL), a component of pulmonary surfactant, and the effects of dispersion in DPL were compared to those in two other media: ethanol (EtOH) and phosphate-buffered saline (PBS). Effects of MWCNT were also compared to those of two asbestos fibers (chrysotile and crocidolite) and carbon black (CB) nanoparticles, not only in A549 cells but also in mesothelial cells (MeT5A human cell line), used as an asbestos-sensitive cell type. MWCNT formed agglomerates on top of both cell lines (surface area 15–35 μm2) that were significantly larger and more numerous in PBS than in EtOH and DPL. Whatever the dispersion media, incubation with 100 μg/ml MWCNT induced a similar decrease in metabolic activity without changing cell membrane permeability or apoptosis. Neither MWCNT cellular internalization nor oxidative stress was observed. In contrast, asbestos fibers penetrated into the cells, decreased metabolic activity but not cell membrane permeability, and increased apoptosis, without decreasing cell number. CB was internalized without any adverse effects. In conclusion, this study demonstrates that MWCNT produced for industrial purposes exert adverse effects without being internalized by human epithelial and mesothelial pulmonary cell lines.


Particle and Fibre Toxicology | 2011

Coating carbon nanotubes with a polystyrene-based polymer protects against pulmonary toxicity

Lyes Tabet; Cyrill Bussy; Ari Setyan; Angélique Simon-Deckers; Michel J. Rossi; Jorge Boczkowski; Sophie Lanone

Backgroundcarbon nanotubes (CNT) can have adverse effects on health. Therefore, minimizing the risk associated with CNT exposure is of crucial importance. The aim of this work was to evaluate if coating multi-walled CNT (MWCNT) with polymers could modify their toxicity, thus representing a useful strategy to decrease adverse health effects of CNT. We used industrially-produced MWCNT uncoated (NT1) or coated (50/50 wt%) with acid-based (NT2) or polystyrene-based (NT3) polymer, and exposed murine macrophages (RAW 264.7 cell line) or Balb/c mice by intratracheal administration. Biological experiments were performed both in vitro and in vivo, examining time- and dose-dependent effects of CNT, in terms of cytotoxicity, expression of genes and proteins related to oxidative stress, inflammation and tissue remodeling, cell and lung tissue morphology (optical and transmission electron microscopy), and bronchoalveolar lavage fluid content analysis.Resultsextensive physico-chemical characterization of MWCNT was performed, and showed, although similar dimensions for the 3 MWCNT, a much smaller specific surface area for NT2 and NT3 as compared to NT1 (54.1, 34 and 227.54 m2/g respectively), along with different surface characteristics. MWCNT-induced cytotoxicity, oxidative stress, and inflammation were increased by acid-based and decreased by polystyrene-based polymer coating both in vitro in murine macrophages and in vivo in lung of mice monitored for 6 months.Conclusionsthese results demonstrate that coating CNT with polymers, without affecting their intrinsic structure, may constitute a useful strategy for decreasing CNT toxicity, and may hold promise for improving occupational safety and that of general the user.


Nanomedicine: Nanotechnology, Biology and Medicine | 2012

In vivo degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex

Antonio Nunes; Cyrill Bussy; Lisa Gherardini; Moreno Meneghetti; Alberto Bianco; Maurizio Prato; Tommaso Pizzorusso; Khuloud T. Al-Jamal; Kostas Kostarelos

AIM Carbon nanotubes (CNTs) are increasingly being utilized in neurological applications as components of implants, electrodes or as delivery vehicles. Any application that involves implantation or injection of CNTs into the CNS needs to address the distribution and fate of the material following interaction and residence within the neuronal tissue. Here we report a preliminary study investigating the fate and structural integrity of amino-functionalized CNTs following stereotactic administration in the brain cortex. MATERIALS & METHODS The CNTs investigated had previously shown the capacity to internalize in various cell types of the CNS. An aqueous suspension of multiwalled CNT-NH(3) (+) was stereotactically injected into the mouse brain cortex. Their interaction with neural cells and consequent effects on the CNT structural integrity was investigated by optical, transmission electron microscopy and Raman spectroscopy of brain tissue sections for a period between 2 and 14 days post cortical administration. RESULTS & DISCUSSION The occurrence of severe nanotube structure deformation leading to partial degradation of the chemically functionalized-multiwalled CNT-NH(3) (+) in vivo following internalization within microglia was revealed even at early time points. Such initial observations of CNT degradation within the brain tissue render further systematic investigations using high-resolution tools imperative.


Nano Letters | 2008

Carbon nanotubes in macrophages: Imaging and chemical analysis by X-ray fluorescence microscopy

Cyrill Bussy; Julien Cambedouzou; Sophie Lanone; Emilie Leccia; Vasile Heresanu; Mathieu Pinault; M. Mayne-L'Hermite; Nathalie Brun; Claudie Mory; Marine Cotte; Jean Doucet; Jorge Boczkowski; Pascale Launois

X-ray fluorescence microscopy (microXRF) is applied for the first time to study macrophages exposed to unpurified and purified single-walled (SW) and multiwalled (MW) carbon nanotubes (CNT). Investigating chemical elemental distributions allows one to (i) image nanotube localization within a cell and (ii) detect chemical modification of the cell after CNT internalization. An excess of calcium is detected for cells exposed to unpurified SWCNT and MWCNT and related toxicological assays are discussed.


Particle and Fibre Toxicology | 2012

Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity

Cyrill Bussy; Mathieu Pinault; Julien Cambedouzou; Marion Julie Landry; Pascale Jégou; M. Mayne-L'Hermite; Pascale Launois; Jorge Boczkowski; Sophie Lanone

Given the increasing use of carbon nanotubes (CNT) in composite materials and their possible expansion to new areas such as nanomedicine which will both lead to higher human exposure, a better understanding of their potential to cause adverse effects on human health is needed. Like other nanomaterials, the biological reactivity and toxicity of CNT were shown to depend on various physicochemical characteristics, and length has been suggested to play a critical role. We therefore designed a comprehensive study that aimed at comparing the effects on murine macrophages of two samples of multi-walled CNT (MWCNT) specifically synthesized following a similar production process (aerosol-assisted CVD), and used a soft ultrasonic treatment in water to modify the length of one of them. We showed that modification of the length of MWCNT leads, unavoidably, to accompanying structural (i.e. defects) and chemical (i.e. oxidation) modifications that affect both surface and residual catalyst iron nanoparticle content of CNT. The biological response of murine macrophages to the two different MWCNT samples was evaluated in terms of cell viability, pro-inflammatory cytokines secretion and oxidative stress. We showed that structural defects and oxidation both induced by the length reduction process are at least as responsible as the length reduction itself for the enhanced pro-inflammatory and pro-oxidative response observed with short (oxidized) compared to long (pristine) MWCNT. In conclusion, our results stress that surface properties should be considered, alongside the length, as essential parameters in CNT-induced inflammation, especially when dealing with a safe design of CNT, for application in nanomedicine for example.


Neuroscience Letters | 2005

Bioaccumulation and behavioural effects of depleted uranium in rats exposed to repeated inhalations

Marjorie Monleau; Cyrill Bussy; Philippe Lestaevel; P. Houpert; F. Paquet; V. Chazel

Depleted uranium has numerous industrial and military uses. Contamination by inhalation of airborne compounds is probably the most important route of exposure. In humans, there are no data clearly demonstrating neurotoxicity of uranium, yet some experimental studies suggest a link between neurological toxicity and uranium exposure. In this work, the bioaccumulation of uranium in male rats after exposure to repeated depleted uranium dioxide inhalation (30 min inhalation at 197 mgm(-3), 4 days a week for 3 weeks) has been studied, together with the behavioural effects. The uranium concentrations in the brain 1 day after the end of the exposure period varied as follows: olfactory bulb>hippocampus>frontal cortex>cerebellum, subsequently decreasing rapidly. The spontaneous locomotion activity of exposed rats was increased 1 day post exposure and the spatial working memory was less efficient 6 days post exposure, compared with control rats. These data suggest that depleted uranium is able to enter the brain after exposure to repeated inhalation, producing behavioural changes.


PLOS ONE | 2013

In vivo cell reprogramming towards pluripotency by virus-free overexpression of defined factors.

Açelya Yilmazer; Irene de Lázaro; Cyrill Bussy; Kostas Kostarelos

The ability to induce the reprogramming of somatic mammalian cells to a pluripotent state by the forced expression of specific transcription factors has helped redefine the rules of cell fate and plasticity, as well as open possibilities for disease modeling, drug screening and regenerative medicine. Here, we hypothesized that the non-viral forced expression of the four originally discovered defined factors (OKSM) in adult mice could result in in vivo reprogramming of cells in the transfected tissue in situ. We show that a single hydrodynamic tail-vein (HTV) injection of two plasmids encoding for Oct3/4, Sox2, Klf4 and c-Myc respectively, are highly expressed in the liver tissue of Balb/C adult mice. Hallmark pluripotency markers were upregulated within 24–48 h after injection, followed by down-regulation of all major hepatocellular markers. Generation of transcriptionally reprogrammed cells in vivo was further confirmed by positive staining of liver tissue sections for all major pluripotency markers in Balb/C mice and the Nanog-GFP reporter transgenic strain (TNG-A) with concomitant upregulation of GFP expression in situ. No signs of physiological or anatomical abnormalities or teratoma formation were observed in the liver examined up to 120 days. These findings indicate that virus-free expression of OKSM factors in vivo can transcriptionally reprogram cells in situ rapidly, efficiently and transiently, absent of host tissue damage or teratoma formation.


Journal of Materials Chemistry B | 2013

Design, engineering and structural integrity of electro-responsive carbon nanotube-based hydrogels for pulsatile drug release

Ania Servant; Cyrill Bussy; Khuloud T. Al-Jamal; Kostas Kostarelos

Triggerable drug delivery from polymeric implants offers the possibility to generate remote-controlled drug release profiles that may overcome the deficiencies of conventional administration routes (intravenous injections and oral administration) including the toxicity due to overdose and systemic administration. An electro-responsive delivery system was engineered to deliver drug molecules in a pulsatile manner, controlled by the on/off application of electric voltage. Pristine multi-walled carbon nanotubes (pMWNTs) were incorporated into a polymethacrylic acid (PMAA)-based hydrogel matrix by in situ radical polymerisation. The effect of pMWNTs and cross-linker concentration on the electrical and mechanical properties of the hydrogel hybrids was thoroughly investigated. The incorporation of pMWNTs into the polymeric network improved the electrical properties of the hydrogel hybrids and drug release from the gels was significantly enhanced at high pMWNT concentrations, reaching 70% of the loaded dose after two short electrical stimulations. The presence of pMWNTs within the hydrogel matrix affected however the mechanical properties of the hydrogel by decreasing the pore size and therefore the swelling/de-swelling of the gels. The damage to the hybrid gel surfaces after electrical stimulation and the loss of the pulsatile release profile at high cross-linker concentrations suggested that the mechanism of drug release involved a compressing effect and intensified the stress on the polymeric network as a result of the electrical properties of pMWNTs.


ACS Nano | 2015

Microglia Determine Brain Region-Specific Neurotoxic Responses to Chemically Functionalized Carbon Nanotubes

Cyrill Bussy; Khuloud T. Al-Jamal; Jorge Boczkowski; Sophie Lanone; Maurizio Prato; Alberto Bianco; Kostas Kostarelos

Surface tunability and their ability to translocate plasma membranes make chemically functionalized carbon nanotubes (f-CNTs) promising intracellular delivery systems for therapeutic or diagnostic purposes in the central nervous system (CNS). The present study aimed to determine the biological impact of different types of multiwalled CNTs (MWNTs) on primary neuronal and glial cell populations isolated from fetal rat frontal cortex (FCO) and striatum (ST). Neurons from both brain regions were generally not affected by exposure to MWNTs as determined by a modified LDH assay. In contrast, the viability of mixed glia was reduced in ST-derived mixed glial cultures, but not in FCO-derived ones. Cytotoxicity was independent of MWNT type or dose, suggesting an inherent sensitivity to CNTs. Characterization of the cell populations in mixed glial cultures prior to nanotube exposure showed higher number of CD11b/c positive cells in the ST-derived mixed glial cultures. After exposure to MWNTs, CNT were uptaken more effectively by CD11b/c positive cells (microglia), compared to GFAP positive cells (astrocytes). When exposed to conditioned media from microglia enriched cultures exposed to MWNTs, ST-derived glial cultures secreted more NO than FCO-derived cells. These results suggested that the more significant cytotoxic response obtained from ST-derived mixed glia cultures was related to the higher number of microglial cells in this brain region. Our findings emphasize the role that resident macrophages of the CNS play in response to nanomaterials and the need to thoroughly investigate the brain region-specific effects toward designing implantable devices or delivery systems to the CNS.

Collaboration


Dive into the Cyrill Bussy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Bianco

Ca' Foscari University of Venice

View shared research outputs
Top Co-Authors

Avatar

F. Paquet

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

P. Houpert

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Philippe Lestaevel

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Patrick Gourmelon

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Henk A. Schols

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

René Verhoef

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge