Czeslaw Wychowski
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Czeslaw Wychowski.
Journal of Virology | 2006
Emmanuelle Blanchard; Sandrine Belouzard; Lucie Goueslain; Takaji Wakita; Jean Dubuisson; Czeslaw Wychowski; Yves Rouillé
ABSTRACT Due to difficulties in cell culture propagation, the mechanisms of hepatitis C virus (HCV) entry are poorly understood. Here, postbinding cellular mechanisms of HCV entry were studied using both retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the HCV clone JFH-1 propagated in cell culture (HCVcc). HCVpp entry was measured by quantitative real-time PCR after 3 h of contact with target cells, and HCVcc infection was quantified by immunoblot analysis and immunofluorescence detection of HCV proteins expressed in infected cells. The functional role of clathrin-mediated endocytosis in HCV entry was assessed by small interfering RNA-mediated clathrin heavy chain depletion and with chlorpromazine, an inhibitor of clathrin-coated pit formation at the plasma membrane. In both conditions, HCVpp entry and HCVcc infection were inhibited. HCVcc infection was also inhibited by pretreating target cells with bafilomycin A1 or chloroquine, two drugs known to interfere with endosome acidification. These data indicate that HCV enters target cells by clathrin-mediated endocytosis, followed by a fusion step from within an acidic endosomal compartment.
Journal of Virology | 2005
Anne Goffard; Nathalie Callens; Birke Bartosch; Czeslaw Wychowski; François-Loı̈c Cosset; Claire Montpellier; Jean Dubuisson
ABSTRACT Hepatitis C virus (HCV) encodes two viral envelope glycoproteins. E1 contains 4 or 5 N-linked glycosylation sites and E2 contains up to 11, with most of the sites being well conserved, suggesting that they play an essential role in some functions of these proteins. For this study, we used retroviral pseudotyped particles harboring mutated HCV envelope glycoproteins to study these glycans. The mutants were named with an N followed by a number related to the relative position of the potential glycosylation site in each glycoprotein (E1N1 to E1N4 for E1 mutants and E2N1 to E2N11 for E2 mutants). The characterization of these mutants allowed us to define three phenotypes. For the first group (E1N3, E2N3, E2N5, E2N6, E2N7, and E2N9), the infectivities of the mutants were close to that of the wild type. The second group (E1N1, E1N2, E1N4, E2N1, and E2N11) contained mutants that were still infectious but whose infectivities were reduced to <50% that of the wild type. The third group (E2N2, E2N4, E2N8, and E2N10) contained mutants that had almost totally lost infectivity. The absence of infectivity of the E2N8 and E2N10 mutants was due to the lack of incorporation of the E1E2 heterodimer into HCVpp, which was due to misfolding of the heterodimer, as shown by immunoprecipitation with conformation-sensitive antibodies and by a CD81 pull-down assay. The absence of infectivity of the E2N2 and E2N4 mutants indicated that these two glycans are involved in controlling HCV entry. Altogether, the data indicate that some glycans of HCV envelope glycoproteins play a major role in protein folding and others play a role in HCV entry.
Journal of Virology | 2002
Séverine Carrère-Kremer; Claire Montpellier-Pala; Laurence Cocquerel; Czeslaw Wychowski; François Penin; Jean Dubuisson
ABSTRACT Although biological and biochemical data have been accumulated on most hepatitis C virus proteins, the structure and function of the 63-amino-acid p7 polypeptide of this virus have never been investigated. In this work, sequence analyses predicted that p7 contains two transmembrane passages connected by a short hydrophilic segment. The C-terminal transmembrane domain of p7 was predicted to function as a signal sequence, which was confirmed experimentally by analyzing the translocation of a reporter glycoprotein fused at its C terminus. The p7 polypeptide was tagged either with the ectodomain of CD4 or with a Myc epitope to study its membrane integration, its subcellular localization, and its topology. Alkaline extraction studies confirmed that p7 is an integral membrane polypeptide. The CD4-p7 chimera was detected by immunofluorescence on the surface of nonpermeabilized cells, indicating that it is exported to the plasma membrane. However, pulse-chase analyses showed that only approximately 20% of endoglycosidase H-resistant CD4-p7 was detected after long chase times, suggesting that a large proportion of p7 stays in an early compartment of the secretory pathway. Finally, by inserting a Myc epitope in several positions of p7 and analyzing the accessibility of this epitope on the plasma membrane of HepG2 cells, we showed that p7 has a double membrane-spanning topology, with both its N and C termini oriented toward the extracellular environment. Altogether, these data indicate that p7 is a polytopic membrane protein that could have a functional role in several compartments of the secretory pathway.
Journal of Virology | 2006
Yves Rouillé; François Helle; David Delgrange; Philippe Roingeard; Cécile Voisset; Emmanuelle Blanchard; Sandrine Belouzard; Jane A. McKeating; Arvind H. Patel; Geert Maertens; Takaji Wakita; Czeslaw Wychowski; Jean Dubuisson
ABSTRACT Due to the recent development of a cell culture model, hepatitis C virus (HCV) can be efficiently propagated in cell culture. This allowed us to reinvestigate the subcellular localization of HCV structural proteins in the context of an infectious cycle. In agreement with previous reports, confocal immunofluorescence analysis of the subcellular localization of HCV structural proteins indicated that, in infected cells, the glycoprotein heterodimer is retained in the endoplasmic reticulum. However, in contrast to other studies, the glycoprotein heterodimer did not accumulate in other intracellular compartments or at the plasma membrane. As previously reported, an association between the capsid protein and lipid droplets was also observed. In addition, a fraction of labeling was consistent with the capsid protein being localized in a membranous compartment that is associated with the lipid droplets. However, in contrast to previous reports, the capsid protein was not found in the nucleus or in association with mitochondria or other well-defined intracellular compartments. Surprisingly, no colocalization was observed between the glycoprotein heterodimer and the capsid protein in infected cells. Electron microscopy analyses allowed us to identify a membrane alteration similar to the previously reported “membranous web.” However, no virus-like particles were found in this type of structure. In addition, dense elements compatible with the size and shape of a viral particle were seldom observed in infected cells. In conclusion, the cell culture system for HCV allowed us for the first time to characterize the subcellular localization of HCV structural proteins in the context an infectious cycle.
Journal of General Virology | 1997
Michalak Jp; Czeslaw Wychowski; Choukhi A; Meunier Jc; Ung S; Charles M. Rice; Jean Dubuisson
Hepatitis C virus (HCV) glycoproteins (E1 and E2) both contain a carboxy-terminal hydrophobic region, which presumably serves as a membrane anchor. When they are expressed in animal cell cultures, these glycoproteins, in both mature complexes and misfolded aggregates, are retained in the endoplasmic reticulum. The effect of carboxy-terminal deletions on HCV glycoprotein secretion and folding was examined in this study. Sindbis and/or vaccinia virus recombinants expressing truncated forms of these glycoproteins ending at amino acids 311, 330, 354 and 360 (truncated E1), and 661, 688, 704 and 715 (truncated E2) were constructed. When expressed using Sindbis virus vectors, only truncated forms of E1 and E2 ending at amino acids 311 (E1t311) and 661 (E2t661), respectively, were efficiently secreted. Analysis of secretion of truncated forms of E2 glycoprotein expressed by vaccinia viruses indicated that significant secretion was still observed for a protein as large as E2t715. However, only secreted E2t661 appeared to be properly folded. Secreted HCV glycoprotein complexes were also detected in the supernatant of cell culture when E1t311 and E2t661 were coexpressed. Nevertheless, these secreted complexes, as well as E1t311 expressed alone, were misfolded. The effect of coexpression of E1 and E2 glycoproteins on each others folding was evaluated with the help of a conformation-sensitive monoclonal antibody (for E2) or by analysing intramolecular disulfide bond formation (for E1). Our data indicate that the folding of E2 is independent of E1, but that E2 is required for the proper folding of E1.
Journal of Virology | 2010
François Helle; Gabrielle Vieyres; Laure Elkrief; Costin-Ioan Popescu; Czeslaw Wychowski; Véronique Descamps; Sandrine Castelain; Philippe Roingeard; Gilles Duverlie; Jean Dubuisson
ABSTRACT Hepatitis C virus (HCV) envelope glycoproteins are highly glycosylated, with generally 4 and 11 N-linked glycans on E1 and E2, respectively. Studies using mutated recombinant HCV envelope glycoproteins incorporated into retroviral pseudoparticles (HCVpp) suggest that some glycans play a role in protein folding, virus entry, and protection against neutralization. The development of a cell culture system producing infectious particles (HCVcc) in hepatoma cells provides an opportunity to characterize the role of these glycans in the context of authentic infectious virions. Here, we used HCVcc in which point mutations were engineered at N-linked glycosylation sites to determine the role of these glycans in the functions of HCV envelope proteins. The mutants were characterized for their effects on virus replication and envelope protein expression as well as on viral particle secretion, infectivity, and sensitivity to neutralizing antibodies. Our results indicate that several glycans play an important role in HCVcc assembly and/or infectivity. Furthermore, our data demonstrate that at least five glycans on E2 (denoted E2N1, E2N2, E2N4, E2N6, and E2N11) strongly reduce the sensitivity of HCVcc to antibody neutralization, with four of them surrounding the CD81 binding site. Altogether, these data indicate that the glycans associated with HCV envelope glycoproteins play roles at different steps of the viral life cycle. They also highlight differences in the effects of glycosylation mutations between the HCVpp and HCVcc systems. Furthermore, these carbohydrates form a “glycan shield” at the surface of the virion, which contributes to the evasion of HCV from the humoral immune response.
Journal of Virology | 2000
Laurence Cocquerel; Czeslaw Wychowski; Frédéric Minner; François Penin; Jean Dubuisson
ABSTRACT For most membrane proteins, the transmembrane domain (TMD) is more than just an anchor to the membrane. The TMDs of hepatitis C virus (HCV) envelope proteins E1 and E2 are extreme examples of the multifunctionality of such membrane-spanning sequences. Indeed, they possess a signal sequence function in their C-terminal half, play a major role in endoplasmic reticulum localization of E1 and E2, and are potentially involved in the assembly of these envelope proteins. These multiple functions are supposed to be essential for the formation of the viral envelope. As for the other viruses of the familyFlaviviridae, these anchor domains are composed of two stretches of hydrophobic residues separated by a short segment containing at least one fully conserved charged residue. Replacement of these charged residues by an alanine in HCV envelope proteins led to an alteration of all of the functions performed by their TMDs, indicating that these functions are tightly linked together. These data suggest that the charged residues of the TMDs of HCV glycoproteins play a key role in the formation of the viral envelope.
Journal of Biological Chemistry | 2006
François Helle; Czeslaw Wychowski; Ngoc Vu-Dac; Kirk R. Gustafson; Cécile Voisset; Jean Dubuisson
Inhibition of viruses at the stage of viral entry provides a route for therapeutic intervention. Because of difficulties in propagating hepatitis C virus (HCV) in cell culture, entry inhibitors have not yet been reported for this virus. However, with the development of retroviral particles pseudotyped with HCV envelope glycoproteins (HCVpp) and the recent progress in amplification of HCV in cell culture (HCVcc), studying HCV entry is now possible. In addition, these systems are essential for the identification and the characterization of molecules that block HCV entry. The lectin cyanovirin-N (CV-N) has initially been discovered based on its potent activity against human immunodeficiency virus. Because HCV envelope glycoproteins are highly glycosylated, we sought to determine whether CV-N has an antiviral activity against this virus. CV-N inhibited the infectivity of HCVcc and HCVpp at low nanomolar concentrations. This inhibition is attributed to the interaction of CV-N with HCV envelope glycoproteins. In addition, we showed that the carbohydrate binding property of CV-N is involved in the anti-HCV activity. Finally, CV-N bound to HCV envelope glycoproteins and blocked the interaction between the envelope protein E2 and CD81, a cell surface molecule involved in HCV entry. These data demonstrate that targeting the glycans of HCV envelope proteins is a promising approach in the development of antiviral therapies to combat a virus that is a major cause of chronic liver diseases. Furthermore, CV-N is a new invaluable tool to further dissect the early steps of HCV entry into host cells.
Journal of Biological Chemistry | 1998
Sandrine Duvet; Laurence Cocquerel; André Pillez; René Cacan; André Verbert; Darius Moradpour; Czeslaw Wychowski; Jean Dubuisson
The hepatitis C virus (HCV) genome encodes two envelope glycoproteins (E1 and E2). These glycoproteins interact to form a noncovalent heterodimeric complex which in the cell accumulates in endoplasmic reticulum (ER)-like structures. The transmembrane domain of E2, at least, is involved in HCV glycoprotein complex localization in this compartment. In principle, ER localization of a protein can be the consequence of actual retention in this organelle or of retrieval from the Golgi. To determine which of these two mechanisms is responsible for HCV glycoprotein complex accumulation in the ER, the precise localization of these proteins was studied by immunofluorescence, and the processing of their glycans was analyzed. Immunolocalization of HCV glycoproteins after nocodazole treatment suggested an ER retention. In addition, HCV glycoprotein glycans were not modified by Golgi enzymes, indicating that the ER localization of these proteins is not because of their retrieval from the cis Golgi. Retention of HCV glycoprotein complexes in the ER without retrieval suggests that this compartment plays an important role for the acquisition of the envelope of HCV particles. A true retention in the ER was also observed for E2 expressed in the absence of E1 or for a chimeric protein containing the ectodomain of CD4 in fusion with the transmembrane domain of E2. These data indicate that, in HCV glycoprotein complex, the transmembrane domain of E2, at least, is responsible for true retention in the ER, without recycling through the Golgi.
Journal of General Virology | 1998
Gilles Duverlie; Hafida Khorsi; Sandrine Castelain; Olivier Jaillon; Jacques Izopet; Françoise Lunel; Francois Eb; François Penin; Czeslaw Wychowski
Japanese studies have defined the discrete 2209-2248 amino acid region of the non-structural 5A protein (NS5A(2209-2248)) of hepatitis C virus genotype 1b (HCV 1b) isolates as the interferon sensitivity determining region (ISDR). European studies did not confirm these results since most of the ISDR sequences harboured an intermediate profile. Recently, a direct interaction between the NS5A protein, involving the ISDR, and the interferon-induced protein kinase (PKR) has been reported and presented as a possible explanation of HCV interferon resistance. In the present study, the entire NS5A amino acid sequence from 11 resistant and eight sensitive strains from European HCV 1b isolates was inferred from direct sequencing. The previously described important amino acid stretches and positions in NS5A were compared between the resistant and sensitive groups. Although some variations were observed, no clear differences could be directly correlated with the interferon sensitivity. However, sensitive strains were different, owing to more amino acid changes when compared to a consensus sequence from all strains. The carboxy-terminal region and especially the previously reported NS5A/V3 region showed most of the variations. Moreover, the conformational analysis of NS5A by secondary structure prediction allowed the differentiation of most sensitive strains from resistant ones. It was concluded that other regions different from ISDR were involved in resistance to interferon maybe via the interaction between NS5A and PKR.