Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. A. Callahan is active.

Publication


Featured researches published by D. A. Callahan.


Nature | 2014

Fuel gain exceeding unity in an inertially confined fusion implosion

O. A. Hurricane; D. A. Callahan; D. T. Casey; Peter M. Celliers; C. Cerjan; E. L. Dewald; T. R. Dittrich; T. Döppner; D. E. Hinkel; L. Berzak Hopkins; J. L. Kline; S. Le Pape; T. Ma; A. G. MacPhee; J. L. Milovich; A. Pak; H.-S. Park; P. K. Patel; B. A. Remington; J. D. Salmonson; P. T. Springer; R. Tommasini

Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium–tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a ‘high-foot’ implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium–tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the ‘bootstrapping’ required to accelerate the deuterium–tritium fusion burn to eventually ‘run away’ and ignite.


Physics of Plasmas | 2011

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility

S. W. Haan; J. D. Lindl; D. A. Callahan; D. S. Clark; J. D. Salmonson; B. A. Hammel; L. J. Atherton; R. Cook; M. J. Edwards; S. H. Glenzer; Alex V. Hamza; S. P. Hatchett; Mark Herrmann; D. E. Hinkel; D. Ho; H. Huang; O. S. Jones; J. L. Kline; G. A. Kyrala; O. L. Landen; B. J. MacGowan; M. M. Marinak; D. D. Meyerhofer; J. L. Milovich; K. A. Moreno; E. I. Moses; David H. Munro; A. Nikroo; R. E. Olson; Kyle Peterson

Point design targets have been specified for the initial ignition campaign on the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. The targets contain D-T fusion fuel in an ablator of either CH with Ge doping, or Be with Cu. These shells are imploded in a U or Au hohlraum with a peak radiation temperature set between 270 and 300 eV. Considerations determining the point design include laser-plasma interactions, hydrodynamic instabilities, laser operations, and target fabrication. Simulations were used to evaluate choices, and to define requirements and specifications. Simulation techniques and their experimental validation are summarized. Simulations were used to estimate the sensitivity of target performance to uncertainties and variations in experimental conditions. A formalism is described that evaluates margin for ignition, summarized in a parameter the Ignition Threshold Factor (ITF). Uncertainty and shot-to-shot variability in ITF are evaluated, and...


Science | 2010

Symmetric Inertial Confinement Fusion Implosions at Ultra-High Laser Energies

S. H. Glenzer; B. J. MacGowan; P. Michel; N. B. Meezan; L. J. Suter; S. Dixit; J. L. Kline; G. A. Kyrala; D. K. Bradley; D. A. Callahan; E. L. Dewald; L. Divol; E. G. Dzenitis; M. J. Edwards; Alex V. Hamza; C. A. Haynam; D. E. Hinkel; D. H. Kalantar; J. D. Kilkenny; O. L. Landen; J. D. Lindl; S. LePape; J. D. Moody; A. Nikroo; T. Parham; M. B. Schneider; R. P. J. Town; Paul J. Wegner; K. Widmann; Pamela K. Whitman

Ignition Set to Go One aim of the National Ignition Facility is to implode a capsule containing a deuterium-tritium fuel mix and initiate a fusion reaction. With 192 intense laser beams focused into a centimeter-scale cavity, a major challenge has been to create a symmetric implosion and the necessary temperatures within the cavity for ignition to be realized (see the Perspective by Norreys). Glenzer et al. (p. 1228, published online 28 January) now show that these conditions can be met, paving the way for the next step of igniting a fuel-filled capsule. Furthermore, Li et al. (p. 1231, published online 28 January) show how charged particles can be used to characterize and measure the conditions within the imploding capsule. The high energies and temperature realized can also be used to model astrophysical and other extreme energy processes in a laboratory settings. Laser-driven temperatures and implosion symmetry are close to the requirements for inertial-fusion ignition. Indirect-drive hohlraum experiments at the National Ignition Facility have demonstrated symmetric capsule implosions at unprecedented laser drive energies of 0.7 megajoule. One hundred and ninety-two simultaneously fired laser beams heat ignition-emulate hohlraums to radiation temperatures of 3.3 million kelvin, compressing 1.8-millimeter-diameter capsules by the soft x-rays produced by the hohlraum. Self-generated plasma optics gratings on either end of the hohlraum tune the laser power distribution in the hohlraum, which produces a symmetric x-ray drive as inferred from the shape of the capsule self-emission. These experiments indicate that the conditions are suitable for compressing deuterium-tritium–filled capsules, with the goal of achieving burning fusion plasmas and energy gain in the laboratory.


Physics of Plasmas | 2011

The experimental plan for cryogenic layered target implosions on the National Ignition Facility—The inertial confinement approach to fusion

M. J. Edwards; J. D. Lindl; B. K. Spears; S. V. Weber; L. J. Atherton; D. L. Bleuel; David K. Bradley; D. A. Callahan; Charles Cerjan; D. S. Clark; G. W. Collins; J. Fair; R. J. Fortner; S. H. Glenzer; S. W. Haan; B. A. Hammel; Alex V. Hamza; S. P. Hatchett; N. Izumi; B. Jacoby; O. S. Jones; J. A. Koch; B. J. Kozioziemski; O. L. Landen; R. A. Lerche; B. J. MacGowan; A. J. Mackinnon; E. R. Mapoles; M. M. Marinak; M. J. Moran

Ignition requires precisely controlled, high convergence implosions to assemble a dense shell of deuterium-tritium (DT) fuel with ρR>∼1 g/cm2 surrounding a 10 keV hot spot with ρR ∼ 0.3 g/cm2. A working definition of ignition has been a yield of ∼1 MJ. At this yield the α-particle energy deposited in the fuel would have been ∼200 kJ, which is already ∼10 × more than the kinetic energy of a typical implosion. The National Ignition Campaign includes low yield implosions with dudded fuel layers to study and optimize the hydrodynamic assembly of the fuel in a diagnostics rich environment. The fuel is a mixture of tritium-hydrogen-deuterium (THD) with a density equivalent to DT. The fraction of D can be adjusted to control the neutron yield. Yields of ∼1014−15 14 MeV (primary) neutrons are adequate to diagnose the hot spot as well as the dense fuel properties via down scattering of the primary neutrons. X-ray imaging diagnostics can function in this low yield environment providing additional information about ...


Physics of Plasmas | 2010

Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facilitya)

P. Michel; S. H. Glenzer; L. Divol; David K. Bradley; D. A. Callahan; S. Dixit; S. Glenn; D. E. Hinkel; R. K. Kirkwood; J. L. Kline; W. L. Kruer; G. A. Kyrala; S. Le Pape; N. B. Meezan; R. P. J. Town; K. Widmann; E. A. Williams; B. J. MacGowan; J. D. Lindl; L. Suter

The Hohlraum energetics experimental campaign started in the summer of 2009 on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. These experiments showed good coupling of the laser energy into the targets [N. Meezan et al., Phys. Plasmas 17, 056304 (2010)]. They have also demonstrated controlled crossed-beam energy transfer between laser beams as an efficient and robust tool to tune the implosion symmetry of ignition capsules, as predicted by earlier calculations [P. Michel et al., Phys. Rev. Lett. 102, 025004 (2009)]. A new linear model calculating crossed-beam energy transfer between cones of beams on the NIF has been developed. The model has been applied to the subscale Hohlraum targets shot during the National Ignition Campaign in 2009. A good agreement can be found between the calculations and the experiments when the impaired propagation of the laser beams due to backscatter is accounted for.


Physics of Plasmas | 2011

Capsule implosion optimization during the indirect-drive National Ignition Campaign

O. L. Landen; John Edwards; S. W. Haan; H. F. Robey; J. L. Milovich; B. K. Spears; S. V. Weber; D. S. Clark; J. D. Lindl; B. J. MacGowan; E. I. Moses; J. Atherton; Peter A. Amendt; T. R. Boehly; David K. Bradley; David G. Braun; D. A. Callahan; Peter M. Celliers; G. W. Collins; E. L. Dewald; L. Divol; J. A. Frenje; S. H. Glenzer; Alex V. Hamza; B. A. Hammel; D. G. Hicks; Nelson M. Hoffman; N. Izumi; O. S. Jones; J. D. Kilkenny

Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown ...


Physics of Plasmas | 2014

The high-foot implosion campaign on the National Ignition Facilitya)

O. A. Hurricane; D. A. Callahan; D. T. Casey; E. L. Dewald; T. R. Dittrich; T. Döppner; M. A. Barrios Garcia; D. E. Hinkel; L. Berzak Hopkins; P. Kervin; J. L. Kline; S. Le Pape; T. Ma; A. G. MacPhee; J. L. Milovich; J. D. Moody; A. Pak; P. K. Patel; H.-S. Park; B. A. Remington; H. F. Robey; J. D. Salmonson; P. T. Springer; R. Tommasini; L. R. Benedetti; J. A. Caggiano; Peter M. Celliers; C. Cerjan; Rebecca Dylla-Spears; D. H. Edgell

The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×1015) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidenc...


Physics of Plasmas | 2010

National Ignition Campaign Hohlraum energetics

N. B. Meezan; L. J. Atherton; D. A. Callahan; E. L. Dewald; S. Dixit; E. G. Dzenitis; M. J. Edwards; C. A. Haynam; D. E. Hinkel; O. S. Jones; O. L. Landen; Richard A. London; P. Michel; J. D. Moody; J. L. Milovich; M. B. Schneider; C. A. Thomas; R. P. J. Town; A. Warrick; S. V. Weber; K. Widmann; S. H. Glenzer; L. J. Suter; B. J. MacGowan; J. L. Kline; George A. Kyrala; A. Nikroo

The first series of experiments of the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] tested ignition Hohlraum “energetics,” a term described by four broad goals: (1) measurement of laser absorption by the Hohlraum; (2) measurement of the x-ray radiation flux (TRAD4) on the surrogate ignition capsule; (3) quantitative understanding of the laser absorption and resultant x-ray flux; and (4) determining whether initial Hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF Hohlraum energetics experiments. The Hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (<10%) for Hohlraums filled with helium gas. A discussion of our current understanding of NIF Hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes that have been used to design the Hohlraums. The perf...


Physics of Plasmas | 2011

Symmetry tuning for ignition capsules via the symcap techniquea)

G. A. Kyrala; J. L. Kline; S. Dixit; S. H. Glenzer; D. H. Kalantar; D. K. Bradley; N. Izumi; N. B. Meezan; O. L. Landen; D. A. Callahan; S. V. Weber; J. P. Holder; S. Glenn; M. J. Edwards; J. A. Koch; L. J. Suter; S. W. Haan; R. P. J. Town; P. Michel; O. S. Jones; S. H. Langer; J. D. Moody; E. L. Dewald; T. Ma; J. E. Ralph; Alex V. Hamza; E. G. Dzenitis; J. D. Kilkenny

Symmetry of an implosion is crucial to get ignition successfully. Several methods of control and measurement of symmetry have been applied on many laser systems with mm size hohlraums and ns pulses. On the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] we have large hohlraums of cm scale, long drive pulses of 10 s of ns, and a large number of beams with the option to tune their wavelengths. Here we discuss how we used the x-ray self-emission from imploding surrogates to ignition capsules (symcaps) to measure the symmetry of the implosion. We show that symcaps are good surrogates for low order symmetry, though having lower sensitivity to distortions than ignition capsules. We demonstrate the ability to transfer energy between laser beams in a gas-filled hohlraum using wavelength tuning, successfully tuning the lowest order symmetry of the symcaps in different size hohlraums at different laser energies within the specification established by calculations for successful ignition.


Physics of Plasmas | 2012

Implosion dynamics measurements at the National Ignition Facility

Damien G. Hicks; N. B. Meezan; E. L. Dewald; A. J. Mackinnon; R.E. Olson; D. A. Callahan; T. Döppner; L. R. Benedetti; D. K. Bradley; Peter M. Celliers; D. S. Clark; P. Di Nicola; S. N. Dixit; E. G. Dzenitis; J. E. Eggert; D. R. Farley; J. A. Frenje; S. Glenn; S. H. Glenzer; Alex V. Hamza; R. F. Heeter; J. P. Holder; N. Izumi; D. H. Kalantar; S. F. Khan; J. L. Kline; J. J. Kroll; G. A. Kyrala; T. Ma; A. G. MacPhee

Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1–1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsu...

Collaboration


Dive into the D. A. Callahan's collaboration.

Top Co-Authors

Avatar

D. E. Hinkel

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

N. B. Meezan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. L. Landen

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

S. W. Haan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. L. Kline

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

O. S. Jones

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

E. L. Dewald

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

T. Ma

University of Washington

View shared research outputs
Top Co-Authors

Avatar

L. J. Suter

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

J. L. Milovich

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge