D.A. Dwyer
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D.A. Dwyer.
Physical Review D | 2013
X. Qian; D.A. Dwyer; R. D. McKeown; P. Vogel; Wen-Wen Wang; C. Zhang
Determination of the neutrino mass hierarchy using a reactor neutrino experiment at ∼60 km is analyzed. Such a measurement is challenging due to the finite detector resolution, the absolute energy scale calibration, and the degeneracies caused by current experimental uncertainty of |Δm_(32)^2|. The standard χ^2 method is compared with a proposed Fourier transformation method. In addition, we show that for such a measurement to succeed, one must understand the nonlinearity of the detector energy scale at the level of a few tenths of percent.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2014
J. L. Liu; B. Cai; R. Carr; D.A. Dwyer; W. Q. Gu; Gang Li; X. Qian; R. D. McKeown; R. H. M. Tsang; W. Wang; F. F. Wu; C. Zhang
We describe the automated calibration system for the antineutrino detectors in the Daya Bay Neutrino Experiment. This system consists of 24 identical units instrumented on 8 identical 20-ton liquid scintillator detectors. Each unit is a fully automated robotic system capable of deploying an LED and various radioactive sources into the detector along given vertical axes. Selected results from performance studies of the calibration system are reported.
Chinese Physics C | 2012
Sören Jetter; D.A. Dwyer; Wen-Qi Jiang; D. W. Liu; Yifang Wang; Zhi-Min Wang; L. J. Wen
Detailed measurements of Hamamatsu R5912 photomultiplier signals are presented, including the single photoelectron charge response, waveform shape, nonlinearity, saturation, overshoot, oscillation, prepulsing, and afterpulsing. The results were used to build a detailed model of the PMT signal characteristics over a wide range of light intensities. Including the PMT model in simulated Daya Bay particle interactions shows no significant systematic effects that are detrimental to the experimental sensitivity.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2015
J. Liu; R. Carr; D.A. Dwyer; W. Q. Gu; Gang Li; R. D. McKeown; X. Qian; R. H. M. Tsang; F. F. Wu; C. Zhang
We describe the design and construction of the low rate neutron calibration sources used in the Daya Bay Reactor Anti-neutrino Experiment. Such sources are free of correlated gamma-neutron emission, which is essential in minimizing induced background in the anti-neutrino detector. The design characteristics have been validated in the Daya Bay anti-neutrino detector.
arXiv: Instrumentation and Detectors | 2013
J. Ashenfelter; A. B. Balantekin; H. R. Band; G. Barclay; C. D. Bass; N. S. Bowden; C. D. Bryan; J. J. Cherwinka; R. Chu; T. Classen; D. Davee; D. J. Dean; G. Deichert; M. V. Diwan; M. J. Dolinski; Jeffrey Dolph; D.A. Dwyer; Y. V. Efremenko; S. Fan; A. Galindo-Uribarri; K. Gilje; A. Glenn; M. P. Green; K. Han; S. Hans; Karsten M. Heeger; B. Heffron; L. Hu; Patrick Huber; D.E. Jaffe
arXiv: High Energy Physics - Experiment | 2018
D. Adey; F.P. An; A. B. Balantekin; H. R. Band; M. Bishai; S. Blyth; D. Cao; G. F. Cao; Jun Cao; Y. L. Chan; J. F. Chang; Y. Chang; H. S. Chen; Shaomin Chen; Y. B. Chen; Y. X. Chen; J. H. Cheng; Z.K. Cheng; J. J. Cherwinka; M. C. Chu; A. Chukanov; J.P. Cummings; F.S. Deng; Y. Y. Ding; M. V. Diwan; M. Dolgareva; D.A. Dwyer; W. R. Edwards; M. Gonchar; G. H. Gong