Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. A. Garbutt is active.

Publication


Featured researches published by D. A. Garbutt.


Physics Letters B | 1979

Evidence for planar events in e+e− annihilation at high energies

R. Brandelik; W. Braunschweig; K. Gather; V. Kadansky; K. Lübelsmeyer; P. Mättig; H.-U. Martyn; G. Peise; J. Rimkus; H.G. Sander; D. Schmitz; A. Schultz von Dratzig; D. Trines; W. Wallraff; H. Boerner; H. M. Fischer; H. Hartmann; E. Hilger; W. Hillen; G. Knop; W. Korbach; P. Leu; B. Löhr; F. Roth; W. Rühmer; R. Wedemeyer; N. Wermes; M. Wollstadt; R. Buhring; R. Fohrmann

Abstract Hadron jets produced in e+e− annihilation between 13 GeV and 31.6 GeV in c.m. at PETRA are analyzed. The transverse momentum of the jets is found to increase strongly with c.m. energy. The broadening of the jets is not uniform in azimuthal angle around the quark direction but tends to yield planar events with large and growing transverse momenta in the plane and smaller transverse momenta normal to the plane. The simple q q collinear jet picture is ruled out. The observation of planar events shows that there are three basic particles in the final state. Indeed, several events with three well-separated jets of hadrons are observed at the highest energies. This occurs naturally when the outgoing quark radiates a hard noncollinear gluon, i.e., e + e − → q q g with the quarks and the gluons fragmenting into hadrons with limited transverse momenta.


Physics Letters B | 1979

Properties of hadron final states in e+e− annihilation at 13 GeV and 17 GeV center of mass energies

R. Brandelik; J. C. Hart; J. Proudfoot; D. Heyland; H.G. Sander; E. Hilger; R. Fohrmann; Jorg Pyrlik; D. H. Saxon; W. Braunschweig; H. Hultschig; A. Ladage; P.J. Dornan; S. L. Lloyd; H.-U. Martyn; D. Revel; G. Mikenberg; H. M. Fischer; Roger J Cashmore; O. Römer; H. Boerner; D. Trines; M. Wollstadt; B. Löhr; Kenneth Watson Bell; G. Poelz; M. Ogg; Roger Barlow; D. A. Garbutt; R. Wedemeyer

Abstract We have observed e + e − hadrons at C.M. energies of 13 GeV and 17 GeV at PETRA using the TASSO detector. We find R (13 GeV) = 5.6 ± 0.7 and R (17 GeV) = 4.0 ± 0.7. The additional systematic uncertainty is 20%. Comparing inclusive charged hadron spectra we observe scaling between 5 GeV and 17 GeV for x = p / p beam > 0.2; however the 13 GeV cross section is above the 17 GeV cross section for smaller x . This may be due to copious bb production. The events become increasingly jet like at high energies as evidenced by a shrinking sphericity distribution with increasing energy.


Physics Letters B | 1980

Rapid Growth of Charged Particle Multiplicity in High-Energy e+ e- Annihilations

R. Brandelik; A. Pevsner; J. Proudfoot; D. G. Cassel; D. Heyland; H.G. Sander; S. Yarker; E. Hilger; D. R. Quarrie; R. Fohrmann; Jorg Pyrlik; D. H. Saxon; W. Braunschweig; H. Hultschig; A. Ladage; P.J. Dornan; Peter Mattig; H.-U. Martyn; J.K. Sedgbeer; D. Revel; G. Mikenberg; H. M. Fischer; W. Chinowsky; O. Römer; H. Boerner; D. Trines; M. Wollstadt; B. Löhr; Kenneth Watson Bell; G. Poelz

Abstract Hadron production by e + e − annihilation has been studied for c.m. energies W between 13 and 31.6 GeV. As a function of 1n W the charged particle multiplicity grows faster at high energy than at lower energies. This is correlated with a rise in the plateau of the rapidity distribution. The cross section s d σ /d x is found to scale within ±30% for x > 0.2 and 5 ⩽ W ⩽ 31.6 GeV.


Physics Letters B | 1980

Comparison of e+e− annihilation with QCD and determination of the strong coupling constant

R. Brandelik; W. Braunschweig; K. Gather; Kadansky; K. Lübelsmeyer; P. Mättig; H.-U. Martyn; G. Peise; J. Rimkus; H.G. Sander; D. Schmitz; A. Schultz von Dratzig; D. Trines; W. Wallraff; H. Boerner; H. M. Fischer; H. Hartmann; E. Hilger; W. Hillen; L. Koepke; G. Knop; P. Leu; B. Löhr; R. Wedemeyer; N. Wermes; M. Wollstadt; H. Burkhardt; D. G. Cassel; D. Heyland; H. Hultschig

We have analyzed 1113 events of the reaction e+e− → hadrons at CM energies of 12 and 30 GeV in order to make a detailed comparison with QCD. Perturbative effects can be well separated from effects depending on the quark and gluon fragmentation parameters to yield a reliable measurement of the coupling constant αS. At 30 GeV, the result is αS = 0.17 ± 0.02 (statistical) ± 0.03 (systematic). QCD model predictions, using the fragmentation parameters determined along with αS, agree with both gross properties of the final states and with detailed features of the three-jet states.


Physics Letters B | 1980

Evidence for a spin-1 gluon in three-jet events

R. Brandelik; W. Braunschweig; K. Gather; V. Kadansky; F. J. Kirschfink; K. Lübelsmeyer; H.-U. Martyn; G. Peise; J. Rimkus; H. G. Sander; D. Schmitz; A. Schultz von Dratzig; D. Trines; W. Wallraff; H. Boerner; H. M. Fischer; H. Hartmann; E. Hilger; W. Hillen; G. Knop; L. Koepke; H. Kolanoski; P. Leu; B. Löhr; R. Wedemeyer; N. Wermes; M. Wollstadt; H. Burkhardt; D. G. Cassel; D. Heyland

High-energy e+e--annihilation events obtained in the TASSO detector at PETRA have been used to determine the spin of the gluon in the reaction e+e- → qqg. We analysed angular correlations between the three jet axes. While vector gluons are consistent with the data (55% confidence limit), scalar gluons are disfavoured by 3.8 standard deviations, corresponding to a confidence level of about 10-4. Our conclusion is free of possible biases due to uncertainties in the fragmentation process or in determining the qqg kinematics from the observed hadrons.


Physics Letters B | 1983

D*± production by e+e- annihilation near 34.4 GeV cm energy

M. Althoff; W. Braunschweig; K. Gather; F. J. Kirschfink; K. Lübelsmeyer; H.-U. Martyn; G. Peise; J. Rimkus; H. G. Sander; D. Schmitz; H. Siebke; D. Trines; W. Wallraff; H. M. Fischer; H. Hartmann; E. Hilger; W. Hillen; G. Knop; L. Köpke; H. Kolanoski; H. Kück; R. Wedemeyer; N. Wermes; M. Wollstadt; H. Burkhardt; H. Hultschig; P. Joos; W. Koch; U. Kötz; H. Kowalski

Abstract D∗± production via e+e−→D∗±X has been measured at an average CM energy of 34.4 GeV. The D∗± energy spectrum is hard, with a maximum near χ = 0.6. The size of the D∗ cross section, R D ∗ = σ( e + e − → D ∗ X ) σ μμ = 2.50 ± 0.64 ± 0.88 (assuming R D ∗0 = R D ∗+ ) indicates that a large fraction of charm quark production yields D∗ mesons. The D∗± angular distribution exhibits a forward—backward asymmetry, A = −0.28 ± 0.13. This is consistent with that expected in the standard theory for weak neutral currents and leads to |gAc| = 0.89 ± 0.44 for the axial vector coupling of the charm quark.


Physics Letters B | 1980

Charged pion, kaon, proton and antiproton production in high energy e+e− annihilations

R. Brandelik; W. Braunschweig; K. Gather; V. Kadansky; K. Lübelsmeyer; P. Mättig; H.-U. Martyn; G. Peise; J. Rimkus; H. G. Sander; D. Schmitz; A. Schultz von Dratzig; D. Trines; W. Wallraff; H. Boerner; H. M. Fischer; H. Hartmann; E. Hilger; W. Hillen; L. Koepke; H. Kolanoski; G. Knop; P. Leu; B. Löhr; R. Wedemeyer; N. Wermes; M. Wollstadt; H. Burkhardt; D. G. Cassel; D. Heyland

Abstract Production of pions, kaons, protons and antiprotons has been studied in e + e − annihilations at 12 and 30 GeV centre of mass energy using time of flight techniques. The fractional yield of charged kaons and baryons appears to rise with outgoing particle momentum. At our highest energy at least 40% of e + e − annihilations into hadrons are estimated to contain baryons.


Physics Letters B | 1976

Observation of a likely example of the decay of a charmed particle produced in a high energy neutrino interaction

Ehs Burhop; D.H. Davis; D.N. Tovee; D Petersen; A.L. Read; G. Coremans-Bertrand; J Sacton; P. Vilain; A.C. Breslin; A. Montwill; Ma Roberts; D. A. Garbutt; Fr Stannard; G Blaes; R Klein; Fm Schmitt; G. Baroni; F Ceradini; M Conversi; L Federici; Mj Ferrer; S Gentile; S Diliberto; S. Petrera; G. Romano; R Santonico; G Bassompierre; M. Jung; N. Kurtz; M. Paty

Abstract In a study of neutrino interactions occurring in nuclear emulsion, an event has been found that is most readily interpreted as the decay of a charmed particle with lifetime a few times 10 −13 s.


European Physical Journal C | 1985

Particle correlation observed ine+e− annihilations into hadrons at c.m. Energies between 29 and 37 GeV

M. Althoff; W. Braunschweig; F. J. Kirschfink; H.-U. Martyn; R. Rosskamp; H. Siebke; W. Wallraff; J. Eisenmann; H. M. Fischer; H. Hartmann; A. Jocksch; G. Knop; H. Kolanoski; H. Kück; V. Mertens; R. Wedemeyer; B. Foster; Andrew T. A. Wood; E. Bernardi; Y. Eisenberg; A. Eskreys; R. Fohrmann; K. Gather; H. Hultschig; P. Joos; B. Klima; U. Kötz; H. Kowalski; A. Lagage; B. Löhr

We have studied the correlations between charged particles produced ine+e− annihilations into hadrons at c.m. energies between 29 and 37 GeV. We have analysed the correlations between the charged multiplicities of the jets and the two particle rapidity and charge correlations. No evidence for correlations between the multiplicities of the two jets is found. Two particle short range rapidity and charge correlations are observed, indicating that particles cluster in rapidity and that their charges compensate locally. An extensive study of these correlation effects by QCD Monte Carlo calculations was performed. Evidence for charge correlations due to Bose-Einstein statistics is also observed.


European Physical Journal C | 1986

Bose-Einstein correlations observed ine+e− annihilation at a centre of mass energy of 34 GeV

M. Althoff; W. Braunschweig; F. J. Kirschfink; H.-U. Martyn; P. Rosskamp; W. Wallraff; J. Eisenmann; H. M. Fischer; H. Hartmann; A. Jocksch; G. Knop; H. Kolanoski; H. Kück; V. Mertens; R. Wedemeyer; B. Foster; Andrew T. A. Wood; E. Bernardi; A. Eskreys; R. Fohrmann; K. Gather; H. Hultschig; P. Joos; U. Karshon; B. Klima; U. Kötz; H. Kowalski; A. Ladage; B. Löhr; D. Lüke

Bose-Einstein correlations between pairs of charged particles produced ine+e− annihilation into hadronic final states have been studied as a function ofQ2, the relative momentum squared of the two particles in their centre of mass, and as functions of various pairs of kinematic variables. The observed Bose-Einstein enhancement reveals correlation between the position and time of particle emission, and the space-time structure of the source is shown to differ from that of a pion fireball. While most features of the data are well accounted for in terms of the space-time structure of a simple string model, the correlations are better described by the simple function 1+αe−βQ2. The implications of this result are discussed. The principal features of three particle correlations are explained in terms of the structure of the source inferred from the observed two particle correlations.

Collaboration


Dive into the D. A. Garbutt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Wallraff

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar

K. Gather

RWTH Aachen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Kolanoski

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge