Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. A. Kenny is active.

Publication


Featured researches published by D. A. Kenny.


Reproduction, Fertility and Development | 2008

Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers

F. Carter; Niamh Forde; P. Duffy; M. Wade; Trudee Fair; M.A. Crowe; A.C.O. Evans; D. A. Kenny; J.F. Roche; P. Lonergan

Higher systemic progesterone in the immediate post-conception period is associated with an increase in embryonic growth rate, interferon-tau production and pregnancy rate in cattle. The objective of this study was to examine the effect of increasing progesterone concentration on Day 3 on subsequent embryo survival and development. Oestrus (Day 0) was synchronised in beef-cross heifers (n=210) and approximately two-thirds of the heifers were inseminated with semen from a proven sire, while the remainder were not inseminated. In order to produce animals with divergent progesterone concentrations, half of the animals received a progesterone-releasing intravaginal device (PRID) on Day 3 of the oestrous cycle, which was left in situ until slaughter. The four treatment groups were: (i) pregnant, high progesterone; (ii) pregnant, normal progesterone; (iii) non-pregnant, high progesterone; and (iv) non-pregnant, normal progesterone. Animals were blood-sampled twice daily from Days 0 to 8 and once daily thereafter until slaughter on Days 5, 7, 13 or 16, corresponding to the 16-cell stage, the blastocyst stage, the beginning of elongation and the day of maternal recognition of pregnancy, respectively. Embryos were recovered by flushing the tract with phosphate-buffered saline and characterised by stage of development and, in the case of Days 13 and 16, measured. Data were analysed by mixed models ANOVA, Chi-square analysis and Students t-test where appropriate. Insertion of a PRID on Day 3 increased (P<0.05) progesterone concentrations from Day 3.5 onwards. There was no difference between treatments in the proportion of embryos at the expected stage of development on Days 5 or 7 (P>0.05). While not significantly different, the proportion of viable embryos recovered was numerically greater in the high progesterone group on both Day 13 (58 v. 43%) and Day 16 (90 v. 50%). Elevation of progesterone significantly increased embryonic length on Day 13 (2.24+/-0.51 mm v. 1.15+/-0.16 mm, P=0.034) and Day 16 (14.06+/-1.18 cm v. 5.97+/-1.18 cm, P=0.012). In conclusion, insertion of a PRID on Day 3 of the oestrous cycle increased serum progesterone concentrations on subsequent days, which, while having no phenotypic effect on embryonic development on Days 5 or 7, was associated with an increase in embryonic size on Days 13 and 16.


Journal of Animal Science | 2010

Effect of divergence in residual feed intake on feeding behavior, blood metabolic variables, and body composition traits in growing beef heifers

A. K. Kelly; M. McGee; D. H. Crews; A. G. Fahey; A. R. Wylie; D. A. Kenny

This study examined the relationship of feed efficiency and performance with feeding behavior, blood metabolic variables, and various body composition measurements in growing beef heifers. Individual DMI and growth were measured in yearling Limousin x Holstein-Friesian heifers [n = 86; initial BW = 191.8 (SD = 37) kg] fed a TMR diet comprising 70:30 concentrate:corn silage on a DM basis (ME of 2.65 Mcal/kg of DM; DM of 580 g/kg) for 82 d. Meal duration (min/d) and meal frequency (events/d) were calculated for each animal on a daily basis using an Insentec computerized feeding system. Physical measurements as well as ultrasonic fat and muscle depths were recorded on 3 equally spaced occasions during the experimental period. Blood samples were collected by jugular venipuncture on 4 equally spaced occasions and analyzed for plasma concentrations of IGF-I, insulin, leptin, and various metabolites. Phenotypic residual feed intake (RFI) was calculated for all animals as the residuals from a multiple regression model regressing DMI on ADG and midtest BW(0.75). Overall, ADG, DMI, feed conversion ratio (FCR), and RFI were 1.51 (SD = 0.13), 6.74 (SD = 0.99), 4.48 (SD = 0.65), and 0.00 (SD = 0.48) kg/d, respectively. Residual feed intake was positively correlated with DMI (r = 0.47) and FCR (r = 0.46), but not with ADG or midtest BW. Positive correlations (ranging from r = 0.27 to r = 0.63) were estimated between ultrasonic measures of final lumbar fat and lumbar fat accretion over the test period and DMI, FCR, and RFI. The inclusion of gain in lumbar fat to the base RFI model increased R(2) (0.77 vs. 0.80) value for the degree of variation in DMI not explained by midtest BW and ADG alone. The Pearson rank correlation between RFI and carcass-adjusted RFI (RFI(c)) was high (r = 0.93). From the plasma analytes measured, NEFA (r = -0.21; P < 0.05) and beta-hydroxybutyrate (r = 0.37; P < 0.05) concentrations were correlated with RFI. Plasma leptin (r = 0.48), glucose:insulin (r = -0.23), NEFA (r = -0.32), and beta-hydroxybutyrate (r = 0.25) were associated with FCR. However, systemic IGF-I and insulin were unrelated (P > 0.05) to any measure of feed efficiency. The feeding behavior traits of eating rate, daily feeding events, and nonfeeding events were positively correlated (P < 0.05) with RFI and RFI(c). This multifactorial study provides new information on some of the biological processes responsible for variation in feed efficiency in beef cattle.


Journal of Animal Science | 2010

Phenotypic and genetic parameters for different measures of feed efficiency in different breeds of Irish performance-tested beef bulls

J. J. Crowley; M. McGee; D. A. Kenny; D. H. Crews; R.D. Evans; D.P. Berry

No genetic parameters for performance and feed efficiency traits are available for Irish performance-tested bulls. The objective of this study was to determine the phenotypic and genetic variation for feed intake, BW, ADG, and measures of feed efficiency including feed conversion ratio (FCR), relative growth rate, Kleiber ratio, residual BW gain (RG), and residual feed intake (RFI). Observations were available on up to 2,605 bulls for each trait from one test station across 24 yr; breeds included in the analyses were Aberdeen Angus (AN), Charolais (CH), Hereford, Limousin (LI), and Simmental. The test period was at least 70 d. Bulls were individually offered concentrates ad libitum, with a restricted forage allowance. Differences in performance and feed efficiency existed among breeds. For example, AN, on average, ate 0.04 kg of DM/d more than CH but had ADG of 0.14 kg/d less over the 70-d test period. Results showed LI and CH were the most efficient breeds when efficiency was defined as FCR or RFI. When animals were partitioned into groups based on high, medium, or low RFI, the low RFI (i.e., most efficient) group were also the more efficient as defined by RG and FCR. The low RFI group had the same ADG as the medium group and a greater ADG (P < 0.01) than the high group (1.67 vs. 1.66 and 1.63 kg/d); yet they ate 0.67 kg of DM/d less (P < 0.001) than the medium RFI group and 1.22 kg of DM/d less (P < 0.001) than the high RFI (i.e., least efficient) group. Genetic parameters for all performance and efficiency measures were estimated across breeds using linear animal mixed models; heritability estimates for feed efficiency traits ranged from 0.28 +/- 0.06 (RG) to 0.45 +/- 0.06 (RFI). An additional series of analyses included a maternal component in the model; maternal heritability estimates for feed efficiency traits ranged from 0.05 +/- 0.03 (RG) to 0.11 +/- 0.05 (relative growth rate). Genetic correlations between most of the different feed efficiency measures were strong. Results from this study indicate significant genetic differences in performance and some measures of feed efficiency among performance-tested beef bulls.


Animal Reproduction Science | 2002

Extent, pattern and factors associated with late embryonic loss in dairy cows

V. Silke; M.G. Diskin; D. A. Kenny; M.P. Boland; P. Dillon; John F. Mee; J.M. Sreenan

Intensive genetic selection for increased milk production, coupled with increased dry matter intakes has led to significant improvements in cow milk yield, however, this increase in milk output has been accompanied by a decline in cow fertility. It has been suggested that there is a higher increment of late embryonic loss in high-yielding than in moderate yielding cows or in heifers. The objectives of this study were to establish the extent and pattern of embryonic loss, from days 28 to 84 of gestation, and to examine possible relationships between cow milk yield, cow genetic merit, parity, calving to insemination interval and embryonic loss in dairy cows managed mainly under pasture-based milk production systems. Multiparous dairy cows (n=1046) located on 8 farms and nulliparous dairy heifers (n=162) located on five of these farms were used in this study. The extent and timing of embryonic loss was measured by ultrasound scanning of the cows and heifers at 14-day intervals between days 28 and 84 of gestation. Positive diagnosis of pregnancy was based on the presence of an embryo or foetus with a visible heartbeat and, at the later scans, visible movement, whose size was compatible with stage of gestation and also on the presence of clear amniotic fluid of the cows and heifers presented as presumed pregnant on day 28 after insemination, 67 and 81%, respectively had a viable embryo. The subsequent embryonic loss rate between days 28 and 84 of gestation was similar (P>0.05) for cows (7.2%) and heifers (6.1%) and the pattern of loss over this period was also similar (P>0.05) for cows and heifers. There was no significant association (P>0.05) between level of milk production or milk energy output measured to day 120 of lactation and embryonic loss rate. Similarly, there was no significant relationship (P>0.05) between % milk fat, % milk protein and % milk lactose and embryonic loss rate. The extent and pattern of embryonic loss were not related (P>0.05) to either cow or to cow sire genetic merit. There was no significant (P>0.05) relationship between the calving to first service interval and embryonic loss. The extent of embryonic loss was greater (P<0.05) in cows that lost body condition between days 28 and 56 of gestation compared with cows than either maintained or improved in body condition.


Theriogenology | 2008

Effect of level of dietary n-3 polyunsaturated fatty acid supplementation on systemic and tissue fatty acid concentrations and on selected reproductive variables in cattle

S. Childs; A A Hennessy; J.M. Sreenan; D C Wathes; Zhangrui Cheng; C. Stanton; M.G. Diskin; D. A. Kenny

Reproductively normal crossbred beef heifers were individually offered a diet of barley straw and concentrate supplemented with one of four levels of a fish oil (FO) enriched supplement. Following oestrous cycle synchronisation, blood samples were collected at appropriate intervals for the measurement of progesterone (P(4)), oestradiol (E(2)), fatty acids, insulin-like growth factor 1 (IGF-1) and metabolites. On days 15 and 16 of the cycle, oxytocin was administered intravenously and the prostaglandin F(2alpha) (PGF(2alpha)) response was measured as venous concentrations of 13,14-dihydro-15-keto PGF(2alpha) (PGFM). The heifers were slaughtered on days 17 or 18 of the oestrous cycle and endometrial tissue, rumen fluid and follicular fluid were collected for determination of fatty acid concentrations. In general there was no effect (P>0.05) of diet on plasma P(4) or E(2) concentrations. Increasing FO supplementation increased CL diameter on day 7 post-oestrus (P<0.0001) but had no effect on diameter on day of slaughter (P>0.05). On day 15, PGFM concentration was greater on the highest level of FO supplementation compared to controls (P<0.05), however, there were no differences between other diet comparisons (P>0.05). There was no effect of diet on PGFM concentration on day 16 (P>0.05). There was a strong positive relationship between plasma and uterine endometrial concentrations of both EPA (R(2)=0.86; P<0.0001) and total n-3 PUFA (R(2)=0.77; P<0.0001). IGF-1 concentrations increased on all diets and were greatest at the highest level of n-3 PUFA supplementation (P<0.05).


Journal of Animal Science | 2010

Repeatability of feed efficiency, carcass ultrasound, feeding behavior, and blood metabolic variables in finishing heifers divergently selected for residual feed intake

A. K. Kelly; M. McGee; D. H. Crews; T. Sweeney; T.M. Boland; D. A. Kenny

This study examined the relationship between feed efficiency and performance, and feeding behavior, blood metabolic variables, and various ultrasonic measurements in finishing beef heifers. Within-animal repeatability estimates of feed intake and behavior, performance, feed efficiency, ultrasonic body measures, and plasma analytes across the growing and finishing stages of the lifespan of the animal were also calculated. Fifty heifers previously ranked as yearlings on phenotypic residual feed intake (RFI) were used. Animals [initial BW = 418 (SD = 31.5) kg] were offered a TMR diet consisting of 70:30 concentrate and corn silage on a DM basis (ME 10.7 MJ/kg of DM; DM 530 g/kg) for 84 d. Feeding duration (min/d) and feeding frequency (events/d) were calculated for each animal on a daily basis using a computerized feeding system. Ultrasonic kidney fat and lumbar and rump fat and muscle depths were recorded on 3 equally spaced occasions during the experimental period. Blood samples were collected by jugular venipuncture on 4 occasions during the experimental period and analyzed for plasma concentrations of IGF-I, insulin, and various metabolites. Phenotypic RFI was calculated for all animals as the residuals from a regression model regressing DMI on ADG and midtest BW(0.75). Repeatability was calculated for several traits both within and between production phase using intraclass correlation and Pearson correlation coefficients as appropriate. Overall ADG, DMI, G:F, and RFI were 1.17 kg/d (SD = 0.19), 10.81 kg/d (SD = 1.02), 0.11 kg of BW gain/kg of DM (SD = 0.02), and 0.00 kg of DM/d (SD 0.59). Daily feeding events and eating rate tended to be positively correlated (P = 0.08) with RFI. Ultrasonic kidney fat depth tended to be related to G:F (r = -0.28; P = 0.07), and kidney fat accretion tended to be related to RFI (r = 0.29; P = 0.08). Plasma urea (r = 0.38; P < 0.01), β-hydroxybutyrate (r = 0.40; P < 0.01), and insulin (r = 0.23; P = 0.07) concentrations were correlated with RFI. Plasma glucose (r = -0.25; P = 0.07), glucose:insulin (r = 0.33; P < 0.05), and insulin (r = -0.30; P < 0.05) were associated with G:F. However, systemic IGF-I was unrelated (P > 0.10) to any measure of feed efficiency. Repeatability estimates within the finishing period for DMI, feeding duration, feeding events, feed intake/feeding event, and eating rate were 0.34, 0.37, 0.60, 0.62, and 0.56, respectively. Repeatability estimates (P < 0.001) between the growing and finishing phases for DMI, G:F, and RFI were r = 0.61, r = 0.37, and r = 0.62, respectively. Moderate to strong repeatability values (ranging from r = 0.40 to 0.76; P < 0.001) were obtained for feeding behavior traits between the yearling and finishing phases. We conclude that RFI and feeding behavior are repeatable traits and that some plasma analytes may be potential indicators of RFI in beef cattle.


Journal of Animal Science | 2009

Effect of sward dry matter digestibility on methane production, ruminal fermentation, and microbial populations of zero-grazed beef cattle.

Kenton James Hart; P. G. Martin; P.A. Foley; D. A. Kenny; T. M. Boland

Increasing the digestibility of pasture for grazing ruminants has been proposed as a low-cost practical means of reducing ruminant CH(4) emissions. At high feed intake levels, the proportion of energy lost as CH(4) decreases as the digestibility of the diet increases. Therefore, improving forage digestibility may improve productivity as DM and energy intake are increased. A zero-grazing experiment was conducted to determine the effect of sward DM digestibility (DMD) on DMI, CH(4) emissions, and indices of rumen fermentation of beef animals. Twelve Charolais-cross heifers were assigned to 1 of 2 treatments, with 6 heifers per dietary treatment. Additionally, 4 cannulated Aberdeen Angus-cross steers were randomly allocated to each of these 2 treatments in a crossover design. Dietary treatments consisted of swards managed to produce (i) high digestibility pasture (high DMD) or (ii) pasture with less digestibility (low DMD), both offered for ad libitum intake. All animals were zero-grazed and offered freshly cut herbage twice daily. In vitro DMD values for the high and low DMD swards were 816 and 706 g/kg of DM. Heifers offered the high DMD grass had greater (P < 0.001) daily DMI of 7.66 kg compared with 5.38 kg for those offered the low DMD grass. Heifers offered the high DMD grass had greater (P = 0.003) daily CH(4) production (193 g of CH(4)/d) than those offered the low DMD grass (138 g of CH(4)/d). However, when corrected for DMI, digestible DMI, or ingested gross energy, there was no difference (P > 0.05) in CH(4) production between dietary treatments. For cannulated steers, intake tended (P = 0.06) to be greater for the high DMD grass (5.56 vs. 4.27 kg of DM/d), but rumen protozoa (4.95 x 10(4)/mL; P = 0.62); rumen ammonia (34 mg of N/L; P = 0.24); rumen total VFA (103 mM; P = 0.58), and rumen pH (6.8; P = 0.43) did not differ between treatments. There was no difference in total bacteria numbers, relative expression of the mcrA gene, and numbers of cycles to threshold for fungi when determined using quantitative PCR between dietary treatments with mean values of 73.0 ng/microL, 0.958, and 21.75 C(T), respectively. Results of this study demonstrate that there was no difference in CH(4) production when corrected for intake or rumen fermentation variables of beef cattle offered a high or low digestibility sward.


Reproduction | 2008

Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct.

Mark A Fenwick; S Llewellyn; Richard Fitzpatrick; D. A. Kenny; J.J. Murphy; Joe Patton; D C Wathes

Negative energy balance (NEB) during early lactation in dairy cows leads to an altered metabolic state that has major effects on the production of IGF family members. Low IGF-I concentrations are associated with poor fertility and therefore we aimed to determine whether NEB exerts a direct effect on IGF expression in the postpartum oviduct. Multiparous Holstein cows were allocated to two treatments (each n=6) designed using differential feeding and milking regimes to produce either mild NEB (MNEB) or severe NEB (SNEB). Animals were slaughtered in week 2 of lactation when divergent metabolic profiles were evident. Oviducts were collected for RNA analysis by real-time RT-PCR and in situ hybridisation. Quantitative measures in oviduct gene expression were obtained for all members of the IGF family (IGF-I/II, IGF-binding proteins (IGFBP) 1–6 and receptors for IGF types 1 and 2), insulin A/B, GH, glucocorticoid and oestrogen α/β. Expression of IGFBP-2 and IGFBP-6 (both of which have a high affinity for IGF-II) was decreased in SNEB relative to MNEB (P<0.05). No other gene was altered by NEB, but IGF-II, IGFBP-3, IGFBP-5 and IGFBP-6 all showed differential expression in different regions of the oviduct. These results indicate that, in addition to low circulating IGF-I after calving, NEB may also influence IGF availability in the oviduct indirectly through changes in specific IGFBP expression. It is possible that the predicted increased signalling by IGF-II may perturb embryo development, contributing to the high rates of embryonic mortality in dairy cows.


Journal of Animal Science | 2010

Methane emissions, feed intake, performance, digestibility, and rumen fermentation of finishing beef cattle offered whole-crop wheat silages differing in grain content.

E. J. Mc Geough; P. O'Kiely; K. J. Hart; A.P. Moloney; T.M. Boland; D. A. Kenny

This study aimed to quantify the methane emissions and feed intake, performance, carcass traits, digestibility, and rumen fermentation characteristics of finishing beef cattle offered diets based on whole-crop wheat (WCW) silages differing in grain content and to rank these relative to diets based on grass silage (GS) and ad libitum concentrates (ALC). In Exp. 1, a total of 90 continental crossbred steers [538 +/- 27.6 kg of BW (mean +/- SD)] were blocked by BW and assigned in a randomized complete block design to 1 of 6 treatments based on 4 WCW silages [grain-to-straw plus chaff ratios of 11:89 (WCW I), 21:79 (WCW II), 31:69 (WCW III), and 47:53 (WCW IV)], GS, and ALC. Increasing grain content in WCW silage resulted in a quadratic (P = 0.01) response in DMI, with a linear (P < 0.001) increase in carcass gain [CG; 577 (WCW I), 650 (WCW II), 765 (WCW III), and 757 g/d (WCW IV)]. The G:F also increased linearly (P < 0.001) in response to increasing the grain content of WCW silage. A quadratic (P < 0.01) response in daily methane output [295 (WCW I), 315 (WCW II), 322 (WCW III), and 273 g/d (WCW IV)], measured using the sulfur hexafluoride tracer technique, was observed in response to increasing the grain content of WCW; however, linear decreases were observed when expressed relative to DMI (P = 0.01) and CG (P < 0.001). Cattle offered GS exhibited carcass gains similar to those offered WCW silage diets and had greater methane emissions than cattle in any other treatment when expressed relative to DMI. Cattle offered ALC exhibited greater (P < 0.01) carcass gains and decreased (P < 0.001) methane emissions, irrespective of the unit of expression, compared with cattle in any of the silage-based treatments. In Exp. 2, rumen fermentation parameters were determined using 4 ruminally cannulated Rotbunde-Holstein steers (413 +/- 30.1 kg of BW) randomly allocated among WCW I, the average of WCW II and III (WCW II/III), WCW IV, and GS in a 4 x 4 Latin square design. Ruminal pH and total VFA concentration did not differ across dietary treatments. Molar proportion of acetic acid decreased (P = 0.01), with propionic acid tending to increase (P = 0.06) with increasing grain content. It was concluded that increasing the grain content of WCW silage reduced methane emissions relative to DMI and CG and improved animal performance. However, the relativity of GS to WCW in terms of methane emissions was dependent on the unit of expression used. Cattle offered ALC exhibited decreased methane emissions and greater performance than those offered any of the silage-based treatments.


Journal of Animal Science | 2009

Effect of level and duration of dietary n-3 polyunsaturated fatty acid supplementation on the transcriptional regulation of Δ9-desaturase in muscle of beef cattle1

Sinéad M. Waters; J. P. Kelly; P. O'Boyle; A.P. Moloney; D. A. Kenny

The objective of this study was to examine the effect of level and duration of feeding of an n-3 PUFA-enriched fish oil (FO) supplement in combination with soybean oil (SO) on the transcriptional regulation of Delta(9)-desaturase gene expression in bovine muscle. Beef bulls (n = 40) were assigned to 1 of 4 iso-lipid and isonitrogenous concentrate diets fed for ad libitum intake for a 100-d finishing period. Concentrates were supplemented with one of the following: 1) 6% SO (CON); 2) 6% SO + 1% FO (FO1); 3) 6% SO + 2% FO (FO2); or 4) 8% palmitic acid for the first 50 d and 6% SO + 2% FO for the second 50 d [FO2(50)]. Samples of LM were harvested and concentrations of fatty acids were measured. Total RNA was isolated and the gene expression of Delta(9)-desaturase was determined. The mRNA expression of putative regulators of Delta(9)-desaturase gene expression, sterol regulatory element binding protein-1c (SREBP-1c) and peroxisome proliferator activated receptor-alpha (PPAR-alpha), were also measured in the CON and FO2 groups. Expression of mRNA for Delta(9)-desaturase was decreased (P < 0.05) 2.6-, 4.4-, and 4.9-fold in FO1, FO2(50), and FO2 compared with CON, respectively. Expression of Delta(9)-desaturase mRNA tended to be reduced (P = 0.09) by increasing FO from 1 to 2%, but was not affected by duration of supplementation (P > 0.24). Expression of mRNA for SREBP-1c was decreased 2-fold in FO2 compared with CON (P < 0.05), whereas expression of PPAR-alpha was not affected (P > 0.30). There was a positive relationship between Delta(9)-desaturase and SREBP-1c gene expression (P < 0.01), but the expression of both genes was negatively related to tissue concentrations of n-3 PUFA (P < 0.05) and positively related to concentration of n-6 PUFA (P < 0.01). Simultaneous enhancement of tissue concentrations of CLA and n-3 PUFA concentrations in bovine muscle may be hindered by negative interactions between n-3 PUFA and Delta(9)-desaturase gene expression, possibly mediated through reduced expression of SREBP-1c.

Collaboration


Dive into the D. A. Kenny's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. K. Kelly

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Lonergan

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge