Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Blaine Moore is active.

Publication


Featured researches published by D. Blaine Moore.


Brain Research | 1999

Bcl-2 overexpression protects the neonatal cerebellum from ethanol neurotoxicity

Marieta Barrow Heaton; D. Blaine Moore; Michael Paiva; Theresa Gibbs; Ora Bernard

The developing nervous system is extremely sensitive to ethanol, and exposure often produces a condition known as the fetal alcohol syndrome. Although mechanisms underlying developmental ethanol toxicity have long been sought, they remain poorly understood. In this study, we examined the ability of the cell death repressor gene bcl-2 to protect against ethanol neurotoxicity. Transgenic mice overexpressing bcl-2 in neurons were exposed to ethanol vapor on postnatal days 4 and 5, which is the peak period of vulnerability of cerebellar Purkinje cells to ethanol. While exposure of wild-type animals to ethanol resulted in significant loss of Purkinje cells by P5, similar exposure of homozygous and heterozygous transgenics had no effect on the number of these neurons. This study suggests that bcl-2 can protect neurons from ethanol neurotoxicity and that modulation of cell death effector or repressor gene products may play a significant role in developmental ethanol neurotoxicity.


Developmental Brain Research | 2003

Effects of ethanol on neurotrophic factors, apoptosis-related proteins, endogenous antioxidants, and reactive oxygen species in neonatal striatum: relationship to periods of vulnerability

Marieta Barrow Heaton; Michael Paiva; Irina Madorsky; Joanne Mayer; D. Blaine Moore

The developing central nervous system is extremely sensitive to ethanol, with well-defined temporal periods of vulnerability. Many brain regions are particularly susceptible to ethanol during the early neonatal period, corresponding to the human third trimester, which represents a dynamic period of growth and differentiation. For this study, neonatal rats were acutely exposed to ethanol or control conditions at a neonatal age when the developing striatum has been shown to be vulnerable to ethanol (postnatal day 3 [P3]), and at a later age (P14), when this developing region is relatively ethanol-resistant. We then analyzed basal levels of neurotrophic factors (NTFs), and ethanol-mediated changes in NTFs, apoptosis-related proteins, antioxidants, and reactive oxygen species (ROS) generation, which may underlie this differential temporal vulnerability. Sequential analyses were made following ethanol exposure on these two postnatal days, with assessments of NTFs nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4); apoptosis-related proteins Bcl-2, Bcl-xl, Bax, Akt and c-jun N-terminal kinase (JNK); antioxidants superoxide dismutase, glutathione reductase and catalase; and ROS. The results indicated that basal levels of BDNF, and to some degree NGF, were greater at the older age, and that ethanol exposure at the earlier age elicited considerably more pro-apoptotic and fewer pro-survival changes than those produced at the later age. Thus, differential temporal vulnerability to ethanol in this CNS region appears to be related to differences in both differential levels of protective substances (e.g. NTFs), and differential cellular responsiveness which favors apoptosis at the most sensitive age and survival at the resistant age.


Developmental Brain Research | 1998

A comparative study of ethanol, hypoglycemia, hypoxia and neurotrophic factor interactions with fetal rat hippocampal neurons: A multi-factor in vitro model for developmental ethanol effects

J.Jean Mitchell; Michael Paiva; D. Blaine Moore; Don W. Walker; Marieta Barrow Heaton

Fetal alcohol syndrome (FAS) is characterized by numerous central nervous system anomalies, with the hippocampus being particularly vulnerable to developmental ethanol exposure. In addition to direct ethanol neurotoxicity, other conditions resulting from maternal ethanol consumption, such as hypoglycemia and hypoxia, may also contribute to FAS. The present study used a tissue culture system to model multiple conditions which may relate to in vivo FAS, and assessed their relative neurotoxicity with MTT assays. Gestational day 18 rat hippocampal cultures were exposed to varying ethanol concentrations, glucose withdrawal-induced hypoglycemic (gwHG, 16 h) or acute hypoxic (aHP, 2 h) conditions alone, as well as to co-treatments with ethanol and gwHG or aHP. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have previously been shown to ameliorate ethanol-, hypoglycemia- and hypoxia-induced neurotoxicity. Therefore, their neuroprotective potential, along with ciliary neurotrophic factor (CNTF), was examined. Neuronal viability was reduced dose-dependently by ethanol, alone or with hypoglycemia or hypoxia. Ethanol + gwHG or aHP was not uniformly additive. NGF treatment provided the most extensive neuroprotection, being effective against ethanol (200 and 400 mg/dl), gwHG, and aHP, alone and combined. BDNF afforded similar protection, but not against ethanol + gwHG. CNTF protected only against aHP. CNTF + BDNF, previously shown to act synergistically, protected against ethanol + aHP up to 800 mg/dl ethanol, but not, paradoxically, against ethanol alone, gwHG, or ethanol + gwHG, all conditions BDNF alone protected against. This study demonstrated that several neurotrophic factors are capable of mitigating neurotoxicity associated with ethanol, hypoglycemia and hypoxia.


Developmental Brain Research | 1999

Neurotrophic factors BDNF and GDNF protect embryonic chick spinal cord motoneurons from ethanol neurotoxicity in vivo.

Douglas M. Bradley; Francesca D. Beaman; D. Blaine Moore; Kara Kidd; Marieta Barrow Heaton

Maternal consumption of ethanol is widely recognized as a leading cause of mental and physical deficits. Many populations of the central nervous system are affected by the teratogenic effects of ethanol. Neurotrophic factors (NTFs) have been shown to protect against ethanol neurotoxicity in culture, although there have been no demonstrations of such protection in vivo, in specific neuronal populations. Previous studies have demonstrated that ethanol is toxic to developing chick embryo motoneurons when administered from embryonic day 10 (E10) to E15. NTFs such as brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) have been shown to support developing spinal cord motoneurons, and when exogenously applied, decrease naturally occurring cell death, and protect against axotomy. The concurrent delivery of BDNF or GDNF with ethanol to the embryonic chick from E10 to E15 was designed to examine the capacity of these NTFs to provide in vivo neuroprotection for this ethanol-sensitive motoneuron population. Analysis of motoneuron numbers indicated that both BDNF and GDNF provided protection to developing spinal cord motoneurons from ethanol toxicity, restoring motoneuron numbers to control levels. This study represents the first demonstration of in vivo neuroprotection from ethanol toxicity with respect to specific neuronal populations.


Neuroscience Letters | 1998

Prenatal ethanol exposure reduces parvalbumin-immunoreactive GABAergic neuronal number in the adult rat cingulate cortex

D. Blaine Moore; Mark A Quintero; Andrea C. Ruygrok; Don W. Walker; Marieta Barrow Heaton

The effect of prenatal ethanol exposure on the number of parvalbumin-immunoreactive (PA+) GABAergic neurons in the adult rat anterior cingulate cortex was determined. Pregnant Long-Evans rats were maintained on one of three diets throughout gestation: an ethanol-containing liquid diet, a similar, control liquid diet with the isocaloric substitution of sucrose for ethanol, or a lab chow control diet. Offspring were euthanized on postnatal day 60 and brains were prepared for parvalbumin immunocytochemistry. Rats exposed to the ethanol-containing diet contained 45% fewer PA+ neurons in the anterior cingulate cortex compared with sucrose and chow controls. This reduction occurred in the absence of changes in structure volume, and occurred in the absence of changes in PA+ neuronal size.


Biochemistry and Molecular Biology Education | 2009

Vertical and Horizontal Integration of Bioinformatics Education: A Modular, Interdisciplinary Approach

Laura Lowe Furge; Regina Stevens-Truss; D. Blaine Moore; James A. Langeland

Bioinformatics education for undergraduates has been approached primarily in two ways: introduction of new courses with largely bioinformatics focus or introduction of bioinformatics experiences into existing courses. For small colleges such as Kalamazoo, creation of new courses within an already resource‐stretched setting has not been an option. Furthermore, we believe that a true interdisciplinary science experience would be best served by introduction of bioinformatics modules within existing courses in biology and chemistry and other complementary departments. To that end, with support from the Howard Hughes Medical Institute, we have developed over a dozen independent bioinformatics modules for our students that are incorporated into courses ranging from general chemistry and biology, advanced specialty courses, and classes in complementary disciplines such as computer science, mathematics, and physics. These activities have largely promoted active learning in our classrooms and have enhanced student understanding of course materials. Herein, we describe our program, the activities we have developed, and assessment of our endeavors in this area.


Journal of Neurobiology | 1997

Ethanol influences on the chick embryo spinal cord motor system. II. Effects of neuromuscular blockade and period of exposure.

Douglas M. Bradley; Francesca D. Beaman; D. Blaine Moore; Marieta Barrow Heaton

The study described below was performed as a continuation of a previous study in which we found reduced motoneuron number in lumbar spinal cord of the chick embryo following chronic ethanol administration from embryonic day 4 (E4) to E11. We sought to determine whether this reduction was due to primary ethanol toxicity or to enhancement of naturally occurring cell death (NOCD) and to determine whether administration of ethanol at a later period of development could also reduce motoneuron number. Earlier studies have shown that curare suspends NOCD in the chick embryo. By administering both ethanol and curare to these embryos from E4 to E11 and examining the lumbar spinal cord on E12, we determined that ethanol was directly toxic to motoneurons and reduced motoneuron number in the absence of NOCD. By administering ethanol from E10 to E15 and examining the lumbar spinal cord on E16, we determined that ethanol can reduce motoneuron number without altering spinal cord length during more than one stage of chick embryo development, and that ethanol toxicity is not dependent on NOCD. In addition, we demonstrated that ethanol does not affect the neurotrophic content of chick muscle when it is administered from E10 to E15.


Alcohol | 1998

Effects of Neonatal Ethanol Exposure on Cholinergic Neurons of the Rat Medial Septum

D. Blaine Moore; Pamela Lee; Michael Paiva; Don W. Walker; Marieta Barrow Heaton

The objective of this study was to determine the long-term effects of neonatal ethanol exposure on the cholinergic neurons in the medial septum (MS) of the rat. On postnatal day 4 (P4) pups were assigned to one of three groups: an ethanol-receiving, gastrostomized group (EtOH); a pair-fed, gastrostomized control group (GC); and a dam-reared suckle control group (SC). Gastrostomized pups were infused with ethanol-containing or control diet as a 9.1% v/v solution for two feedings on each day from P4 to P10. Choline acetyltransferase (ChAT) immunocytochemistry was analyzed at P60. Ethanol treatment resulted in long-lasting microencephaly in P60 EtOH animals. Ethanol exposure did not directly reduce ChAT-expressing (ChAT+) neuronal number, nor were changes noted in MS volume, mean area/section, or cell density as a result of ethanol treatment. Ethanol exposure reduced ChAT+ neuronal size in EtOH males compared with GC males but not SC males. No differences in ChAT+ neuronal size were noted in females. Thus, neonatal ethanol exposure, whereas producing long-lived microencephaly, has little effect on the cholinergic neurons of the adult rat MS.


Alcohol | 2010

ER-targeted Bcl-2 and inhibition of ER-associated caspase-12 rescue cultured immortalized cells from ethanol toxicity.

Andreea G. Balan; Barret J. Myers; Jansi L. Maganti; D. Blaine Moore

Alcohol abuse, known for promoting apoptosis in the liver and nervous system, is a major public health concern. Despite significant morbidity and mortality resulting from ethanol consumption, the precise cellular mechanism of its toxicity remains unknown. Previous work has shown that wild-type Bcl-2 is protective against ethanol. The present study investigated whether protection from ethanol toxicity involves mitochondrial Bcl-2 or endoplasmic reticulum (ER) Bcl-2, and whether mitochondria-associated or ER-associated caspases are involved in ethanol toxicity. Chinese hamster ovary (CHO695) cells were transiently transfected with cDNA constructs encoding wild-type Bcl-2, mitochondria-targeted Bcl-2, or ER-targeted Bcl-2. MTT assay was used to measure cell viability in response to ethanol. Ethanol treatments of 1 and 2.5 M reduced cell viability at 5, 10, and 24 h. Wild-type Bcl-2, localized both to mitochondria and ER, provided significant rescue for CHO695 cells treated with 1M ethanol for 24 h, but did not rescue toxicity at 2.5 M. ER-targeted Bcl-2, however, provided significant and robust rescue following 24 h of 1 and 2.5 M ethanol. Mitochondria-targeted Bcl-2 offered no protection at any ethanol concentration and generally reduced cell viability. To follow up these experiments, we used a peptide inhibitor approach to investigate which caspases were responsible for ethanol-induced apoptosis. Caspase-9 and caspase-12 are known to be downstream of mitochondria and the ER, respectively. CHO695 cells were treated with a pan-caspase inhibitor, a caspase-9 or caspase-12 inhibitor along with 1.5 M ethanol, followed by MTT cell viability assay. Treatment with the pan-caspase inhibitor provided significant rescue from ethanol, whereas inhibition of caspase-9 did not. Inhibition of ER-associated caspase-12, however, conferred significant protection from ethanol toxicity, similar to the pan inhibitor. These findings are consistent with our transfection data and, taken together, suggest a significant role for the ER in ethanol toxicity.


Current Alzheimer Research | 2018

Evaluation of metabolic and synaptic dysfunction hypotheses of alzheimer’s disease (AD): A meta-analysis of CSF markers

Roni Manyevitch; Matthew Protas; Sean Scarpiello; Marisa Deliso; Brittany Bass; Anthony Nanajian; Matthew Chang; Stefani Thompson; Neil Khoury; Rachel Gonnella; Margit Trotz; D. Blaine Moore; Emily Harms; George Perry; Lucy A. Clunes; Angelica Ortiz; Jan O. Friedrich; Ian V.J. Murray

Background: Alzheimer’s disease (AD) is currently incurable and a majority of investigational drugs have failed clinical trials. One explanation for this failure may be the invalidity of hypotheses focus-ing on amyloid to explain AD pathogenesis. Recently, hypotheses which are centered on synaptic and met-abolic dysfunction are increasingly implicated in AD. Objective: Evaluate AD hypotheses by comparing neurotransmitter and metabolite marker concentrations in normal versus AD CSF. Methods: Meta-analysis allows for statistical comparison of pooled, existing cerebrospinal fluid (CSF) marker data extracted from multiple publications, to obtain a more reliable estimate of concentrations. This method also provides a unique opportunity to rapidly validate AD hypotheses using the resulting CSF con-centration data. Hubmed, Pubmed and Google Scholar were comprehensively searched for published Eng-lish articles, without date restrictions, for the keywords “AD”, “CSF”, and “human” plus markers selected for synaptic and metabolic pathways. Synaptic markers were acetylcholine, gamma-aminobutyric acid (GABA), glutamine, and glycine. Metabolic markers were glutathione, glucose, lactate, pyruvate, and 8 other amino acids. Only studies that measured markers in AD and controls (Ctl), provided means, standard er-rors/deviation, and subject numbers were included. Data were extracted by six authors and reviewed by two others for accuracy. Data were pooled using ratio of means (RoM of AD/Ctl) and random effects meta-analysis using Cochrane Collaboration’s Review Manager software. Results: Of the 435 identified publications, after exclusion and removal of duplicates, 35 articles were in-cluded comprising a total of 605 AD patients and 585 controls. The following markers of synaptic and met-abolic pathways were significantly changed in AD/controls: acetylcholine (RoM 0.36, 95% CI 0.24-0.53, p<0.00001), GABA (0.74, 0.58-0.94, p<0.01), pyruvate (0.48, 0.24-0.94, p=0.03), glutathione (1.11, 1.01-1.21, p=0.03), alanine (1.10, 0.98-1.23, p=0.09), and lower levels of significance for lactate (1.2, 1.00-1.47, p=0.05). Of note, CSF glucose and glutamate levels in AD were not significantly different than that of the controls. Conclusion: This study provides proof of concept for the use of meta-analysis validation of AD hypothe-ses, specifically via robust evidence for the cholinergic hypothesis of AD. Our data disagree with the other synaptic hypotheses of glutamate excitotoxicity and GABAergic resistance to neurodegeneration, given ob-served unchanged glutamate levels and decreased GABA levels. With regards to metabolic hypotheses, the data supported upregulation of anaerobic glycolysis, pentose phosphate pathway (glutathione), and anaple-rosis of the tricarboxylic acid cycle using glutamate. Future applications of meta-analysis indicate the pos-sibility of further in silico evaluation and generation of novel hypotheses in the AD field.

Collaboration


Dive into the D. Blaine Moore's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margit Trotz

St. George's University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge