Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. Bodet is active.

Publication


Featured researches published by D. Bodet.


Neuroscience | 2007

Immunocytochemical visualization of D-glutamate in the rat brain

A. Mangas; Rafael Coveñas; D. Bodet; Michel Geffard; L.A. Aguilar; Javier Yajeya

Using highly specific antisera directed against conjugated d-amino acids, the distribution of d-glutamate-, d-tryptophan-, d-cysteine-, d-tyrosine- and d-methionine-immunoreactive structures in the rat brain was studied. Cell bodies containing d-glutamate, but not d-glutamate-immunoreactive fibers, were found. Perikarya containing this d-amino acid were only found in the mesencephalon and thalamus of the rat CNS. Thus, the highest density of cell bodies containing d-glutamate was observed in the dorsal raphe nucleus, the ventral part of the mesencephalic central gray, the superior colliculus, above the posterior commissure, and in the subparafascicular thalamic nucleus. A moderate density of immunoreactive cell bodies was observed in the dorsal part of the mesencephalic central gray, above the rostral linear nucleus of the raphe, the nucleus of Darkschewitsch, and in the medial habenular nucleus, whereas a low density was found below the medial forebrain bundle and in the posterior thalamic nuclear group. Moreover, no immunoreactive fibers or cell bodies were visualized containing d-tryptophan, d-cysteine, d-tyrosine or d-methionine in the rat brain. The distribution of d-glutamate-immunoreactive cell bodies in the rat brain suggests that this d-amino acid could be involved in several physiological mechanisms. This work reports the first visualization and the morphological characteristics of conjugated d-glutamate-immunoreactive cell bodies in the rat CNS using an indirect immunoperoxidase technique. Our results suggest that the immunoreactive neurons observed have an uptake mechanism for d-glutamate.


PLOS ONE | 2015

Accumulation of an endogenous tryptophan-derived metabolite in colorectal and breast cancers.

Paolo Puccetti; Francesca Fallarino; Antoine Italiano; Isabelle Soubeyran; Gaëtan MacGrogan; Marc Debled; Valérie Velasco; D. Bodet; Sandrine Eimer; Marc Veldhoen; Georges C. Prendergast; Michael Platten; Alban Bessede; Gilles J. Guillemin

Tumor immune escape mechanisms are being regarded as suitable targets for tumor therapy. Among these, tryptophan catabolism plays a central role in creating an immunosuppressive environment, leading to tolerance to potentially immunogenic tumor antigens. Tryptophan catabolism is initiated by either indoleamine 2,3-dioxygenase (IDO-1/-2) or tryptophan 2,3-dioxygenase 2 (TDO2), resulting in biostatic tryptophan starvation and l-kynurenine production, which participates in shaping the dynamic relationship of the host’s immune system with tumor cells. Current immunotherapy strategies include blockade of IDO-1/-2 or TDO2, to restore efficient antitumor responses. Patients who might benefit from this approach are currently identified based on expression analyses of IDO-1/-2 or TDO2 in tumor tissue and/or enzymatic activity assessed by kynurenine/tryptophan ratios in the serum. We developed a monoclonal antibody targeting l-kynurenine as an in situ biomarker of IDO-1/-2 or TDO2 activity. Using Tissue Micro Array technology and immunostaining, colorectal and breast cancer patients were phenotyped based on l-kynurenine production. In colorectal cancer l-kynurenine was not unequivocally associated with IDO-1 expression, suggesting that the mere expression of tryptophan catabolic enzymes is not sufficiently informative for optimal immunotherapy.


Bioelectromagnetics | 2012

In utero and early-life exposure of rats to a Wi-Fi signal: Screening of immune markers in sera and gestational outcome

S. Aït-Aïssa; Bernard Billaudel; Florence Poulletier de Gannes; Gilles Ruffié; S. Duleu; A. Hurtier; E. Haro; M. Taxile; Axel Athane; Michel Geffard; Tongning Wu; Joe Wiart; D. Bodet; Bernard Veyret; I. Lagroye

An experimental approach was used to assess immunological biomarkers in the sera of young rats exposed in utero and postnatal to non-ionizing radiofrequency fields. Pregnant rats were exposed free-running, 2 h/day and 5 days/week to a 2.45 GHz Wi-Fi signal in a reverberation chamber at whole-body specific absorption rates (SAR) of 0, 0.08, 0.4, and 4 W/kg (with 10, 10, 12, and 9 rats, respectively), while cage control rats were kept in the animal facility (11 rats). Dams were exposed from days 6 to 21 of gestation and then three newborns per litter were further exposed from birth to day 35 postnatal. On day 35 after birth, all pups were sacrificed and sera collected. The screening of sera for antibodies directed against 15 different antigens related to damage and/or pathological markers was conducted using enzyme-linked immunosorbent assay (ELISA). No change in humoral response of young pups was observed, regardless of the types of biomarker and SAR levels. This study also provided some data on gestational outcome following in utero exposure to Wi-Fi signals. Mass evaluation of dams and pups and the number of pups per litter was monitored, and the genital tracts of young rats were observed for abnormalities by measuring anogenital distance. Under these experimental conditions, our observations suggest a lack of adverse effects of Wi-Fi exposure on delivery and general condition of the animals.


Current Medicinal Chemistry | 2009

A new drug candidate (GEMSP) for multiple sclerosis.

A. Mangas; Rafael Coveñas; D. Bodet; S. Duleu; Michel Geffard

GEMSP is a mixture of functional polypeptides: fatty acids linked to poly-L-Lysine (PL), antioxidants linked to PL, free radical scavengers linked to PL, and amino acids linked to PL (patent numbers 6114388 (USA) and 792167 (EU)). In this review, we update the data on this new drug reported in the literature. There is evidence suggesting that GEMSP is a good candidate for the treatment of multiple sclerosis (MS), an inflammatory and neurodegenerative disease of the central nervous system characterized by focal leukocyte inflammation, demyelization and axonal degeneration, resulting in nerve cell dysfunction. Experimental autoimmune encephalomyelitis (EAE) is the main animal model used in the study of MS, a T cell-mediated autoimmune disease of the central nervous system. EAE has many clinical and histopathological similarities to MS. In this model, preclinical studies on GEMSP have demonstrated that the drug strongly inhibits brain leukocyte infiltration and completely abolishes EAE episodes and clinical scores, and it also appears that GEMSP preserves myelin integrity. In general, treatment with the free constituents of GEMSP (not linked to the inert carrier protein) is poorly active against brain leukocyte infiltration in EAE-immunized animals. This means that free molecules (not linked to PL) exert a very poor action on such infiltration and that these molecules are either rapidly incorporated into the metabolism or are degraded. Moreover, with immunocytochemical techniques, it has been demonstrated that one component of GEMSP, the methionine compound, is stored inside the motoneurons of the ventral horn of the spinal cord. However, this component of GEMSP has not been found in the brain. The new candidate for MS therapy has shown no toxicity either in experimental animals or in humans. An open clinical trial in humans has demonstrated that GEMSP is completely safe. In addition, the approved drugs for the treatment of MS exert marked side effects, but no side effects have been reported following the administration of GEMSP. The results obtained at six months of treatment with low doses of GEMSP (0.75 mg/day) in that open clinical trial in humans were as follows: 55% of the patients maintained a stable expanded disability status scale (EDSS) value and 18% of the patients had a decreased EDSS value instead of a normal progression of 0.25 point on the mean EDSS scale. We focus our review on the following topics: 1) EAE models and clinical evaluation; 2) the synthesis of GEMSP; 3) the effects of GEMSP dosage on EAE; 4) the effects of GEMSP on brain leukocyte infiltration; 5) GEMSP inside motoneurons; 6) the role of the components of GEMSP; and 7) GEMSP in MS patients, GEMSP toxicity, and side effects. In conclusion, all the data reported indicate that GEMSP is a new potential drug candidate for the treatment of MS.


Journal of Chemical Neuroanatomy | 2009

Vitamins in the monkey brain : an immunocytochemical study

A. Mangas; Rafael Coveñas; D. Bodet; S. Duleu; P. Marcos; Michel Geffard

Using highly specific antisera directed against vitamins, the distribution of pyridoxal-, pyridoxine-, vitamin C- and nicotinamide-immunoreactive structures in the monkey (Macaca fascicularis) brain was studied. Neither immunoreactive structures containing pyridoxine or nicotinamide, nor immunoreactive fibers containing vitamin C were found in the monkey brain. However, this work reports the first visualization and the morphological characteristics of pyridoxal- and vitamin C-immunoreactive cell bodies in the mammalian central nervous system using an indirect immunoperoxidase technique. A high density of pyridoxal-immunoreactive cell bodies was found in the paraventricular hypothalamic nucleus and in the supraoptic nucleus and a low density of the same was observed in the periventricular hypothalamic region, whereas a moderate density of vitamin C-immunoreactive cell bodies was observed in the somatosensorial cortex (precentral gyrus). Immunoreactive fibers containing pyridoxal were only visualized in the anterior commissure. The restricted distribution of pyridoxal and vitamin C in the monkey brain suggests that both vitamins could be involved in very specific physiological mechanisms.


The Scientific World Journal | 2011

Frontiers in Vitamin Research : New antibodies, New data

Rafael Coveñas; A. Mangas; D. Bodet; S. Duleu; P. Marcos; Begum Karakas; Michel Geffard

Since 2004, the anatomical distribution of vitamins in the monkey brain, studied using immunohistochemical techniques and new tools (specific antisera that discriminate different vitamins reasonably well), has been an ongoing research field. The visualization of immunoreactive structures containing vitamins (folic acid, riboflavin, thiamine, pyridoxal, and vitamin C) has recently been reported in the monkey brain (Macaca fascicularis), all these vitamins showing a restricted or very restricted distribution. Folic acid, thiamine, and riboflavin have only been observed in immunoreactive fibers, vitamin C has only been found in cell bodies (located in the primary somatosensory cortex), and pyridoxal has been found in both fibers and cell bodies. Perikarya containing pyridoxal have been observed in the paraventricular hypothalamic nucleus, the periventricular hypothalamic region, and in the supraoptic nucleus. The fibers containing vitamins are thick, smooth (without varicosities), and are of medium length or long, whereas immunoreactive cell bodies containing vitamins are round or triangular. At present, there are insufficient data to elucidate the roles played by vitamins in the brain, but the anatomical distribution of these compounds in the monkey brain provides a general idea (although imprecise and requiring much more study) about the possible functional implications of these molecules. In this sense, here the possible functional roles played by vitamins are discussed.


Amyotrophic Lateral Sclerosis | 2008

Gemals, a new drug candidate, extends lifespan and improves electromyographic parameters in a rat model of amyotrophic lateral sclerosis

Charles Nicaise; Jerome Coupier; Marie‐Pierre Dabadie; Robert De Decker; A. Mangas; D. Bodet; Luc Poncelet; Michel Geffard; Roland Pochet

Amyotrophic lateral sclerosis (ALS) is a fatal disease involving selective and progressive degeneration and death of motor neurons. ALS is a multifactorial disease in which oxidative stress, glutamate excitotoxicity, intracellular aggregates, neurofilamentous disorganization, zinc excitotoxicity, mitochondrial damage, neuroinflammation, abnormalities in growth factors and apoptosis play a role. Any therapeutic approach to delay or stop the evolution of ALS should therefore ideally target these multiple pathways leading to motor neuron death. We have developed a combination therapy (Gemals) composed of functional polypeptides (fatty acids, free radical scavengers and amino acids linked to poly‐L‐lysine), chosen according to their known potentiality for regeneration or protection of neuronal components such as myelin, axon transport and mitochondria. We found that Gemals significantly extended lifespan and improved electromyographic parameters in a SOD1G93A rat model. The use of two drug concentrations indicated a possible dose dependence. These initial findings open the way to further investigation necessary to validate this new drug as a candidate for ALS treatment.


Neuroscience Letters | 2012

Direct visualization of retinoic acid in the rat hypothalamus: An immunohistochemical study

A. Mangas; D. Bodet; S. Duleu; Javier Yajeya; Michel Geffard; Rafael Coveñas

In order to increase our knowledge about the distribution of vitamins in the mammalian brain, we have developed a highly specific antiserum directed against retinoic acid with good affinity (10(-8) M), as evaluated by ELISA tests. In the rat brain, no immunoreactive fibers containing retinoic acid were detected. Cell bodies containing retinoic acid were only found in the hypothalamus. This work reports the first visualization and the morphological characteristics of cell bodies containing retinoic acid in the mammalian paraventricular hypothalamic nucleus and in the dorsal perifornical region, using an indirect immunoperoxidase technique. The restricted distribution of retinoic acid in the rat brain suggests that this vitamin could be involved in very specific physiological mechanisms.


Neurotoxicity Research | 2018

Detection of the Cyanotoxins L-BMAA Uptake and Accumulation in Primary Neurons and Astrocytes

Vanessa Tan; Claire Mazzocco; Bianca Varney; D. Bodet; Tristan A. Guillemin; Alban Bessede; Gilles J. Guillemin

We show for the first time that a newly developed polyclonal antibody (pAb) can specifically target the cyanotoxin β-methylamino-L-alanine (BMAA) and can be used to enable direct visualization of BMAA entry and accumulation in primary brain cells. We used this pAb to investigate the effect of acute and chronic accumulation, and toxicity of both BMAA and its natural isomer 2,4-diaminobutyric acid (DAB), separately or in combination, on primary cultures of rat neurons. We further present evidence that co-treatment with BMAA and DAB increased neuronal death, as measured by MAP2 fluorescence level, and appeared to reduce BMAA accumulation. DAB is likely to be acting synergistically with BMAA resulting in higher level of cellular toxicity. We also found that glial cells such as microglia and astrocytes are also able to directly uptake BMAA indicating that additional brain cell types are affected by BMAA-induced toxicity. Therefore, BMAA clearly acts at multiple cellular levels to possibly increase the risk of developing neurodegenerative diseases, including neuro- and gliotoxicity and synergetic exacerbation with other cyanotoxins.


International Journal of Biological Sciences | 2008

Evaluation of the effects of a new drug candidate (GEMSP) in a chronic EAE model

A. Mangas; Rafael Coveñas; D. Bodet; M. de León; S. Duleu; M. Geffard

Collaboration


Dive into the D. Bodet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Mangas

University of Salamanca

View shared research outputs
Top Co-Authors

Avatar

S. Duleu

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Taxile

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Geffard

University of Salamanca

View shared research outputs
Researchain Logo
Decentralizing Knowledge