D. Brisbin
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by D. Brisbin.
Astronomy and Astrophysics | 2011
D. Lutz; A. Poglitsch; B. Altieri; Paola Andreani; H. Aussel; S. Berta; A. Bongiovanni; D. Brisbin; A. Cava; J. Cepa; A. Cimatti; E. Daddi; H. Dominguez-Sanchez; D. Elbaz; N. M. Förster Schreiber; R. Genzel; A. Grazian; C. Gruppioni; Martin Harwit; G. Magdis; B. Magnelli; R. Maiolino; R. Nordon; A. M. Pérez García; P. Popesso; F. Pozzi; L. Riguccini; G. Rodighiero; A. Saintonge; M. Sánchez Portal
Deep far-infrared photometric surveys studying galaxy evolution and the nature of the cosmic infrared background are a key strength of the Herschel mission. We describe the scientific motivation for the PACS Evolutionary Probe (PEP) guaranteed time key program and its role within the entire set of Herschel surveys, and the field selection that includes popular multiwavelength fields such as GOODS, COSMOS, Lockman Hole, ECDFS, and EGS. We provide an account of the observing strategies and data reduction methods used. An overview of first science results illustrates the potential of PEP in providing calorimetric star formation rates for high-redshift galaxy populations, thus testing and superseding previous extrapolations from other wavelengths, and enabling a wide range of galaxy evolution studies.
Astronomy and Astrophysics | 2010
G. Rodighiero; A. Cimatti; C. Gruppioni; P. Popesso; Paola Andreani; B. Altieri; H. Aussel; S. Berta; A. Bongiovanni; D. Brisbin; A. Cava; J. Cepa; E. Daddi; H. Dominguez-Sanchez; D. Elbaz; A. Fontana; N. M. Förster Schreiber; A. Franceschini; R. Genzel; A. Grazian; D. Lutz; G. Magdis; M. Magliocchetti; B. Magnelli; R. Maiolino; C. Mancini; R. Nordon; A. M. Pérez García; A. Poglitsch; P. Santini
Aims. We exploit deep observations of the GOODS-N field taken with PACS, the Photodetector Array Camera and Spectrometer, onboard of Herschel, as part of the PACS evolutionary probe guaranteed time (PEP), to study the link between star formation and stellar mass in galaxies to z ∼ 2. Methods. Starting from a stellar mass – selected sample of ∼4500 galaxies with mag4.5 μm < 23.0 (AB), we identify ∼350 objects with a PACS detection at 100 or 160 μ ma nd∼ 1500 with only Spitzer 24 μm counterpart. Stellar masses and total IR luminosities (LIR) are estimated by fitting the spectral energy distributions (SEDs). Results. Consistently with other Herschel results, we find that LIR based only on 24 μm data is overestimated by a median factor ∼ 1. 8a tz ∼ 2, whereas it is underestimated (with our approach) up to a factor ∼ 1. 6a t 0.5 < z < 1.0. We then exploit this calibration to correct LIR based on the MIPS/Spitzer fluxes. These results clearly show how Herschel is fundamental to constrain LIR, and hence the star formation rate (SFR), of high redshift galaxies. Using the galaxies detected with PACS (and/or MIPS), we investigate the existence and evolution of the relations between the SFR, the specific star formation rate (SSFR=SFR/mass) and the stellar mass. Moreover, in order to avoid selection effects, we also repeat this study through a stacking analysis on the PACS images to fully exploit the far-IR information also for the Herschel and Spitzer undetected subsamples. We find that the SSFR-mass relation steepens with redshift, being almost flat at z < 1.0 and reaching a slope of α = −0.50 +0.13 −0.16 at z ∼ 2, at odds with recent works based on radio-stacking analysis at the same redshift. The mean SSFR of galaxies increases with redshift, by a factor ∼15 for
web science | 2010
Seb Oliver; Martin Kunz; B. Altieri; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; T. Babbedge; M. Béthermin; A. W. Blain; James J. Bock; A. Boselli; D. Brisbin; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; E. Dwek; S. Dye; Stephen Anthony Eales; D. Elbaz; D. Farrah; M. Fox
We present the cross-identification and source photometry techniques used to process Herschel SPIRE imaging taken as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES). Cross-identifications are performed in map-space so as to minimize source-blending effects. We make use of a combination of linear inversion and model selection techniques to produce reliable cross-identification catalogues based on Spitzer MIPS 24-mu m source positions. Testing on simulations and real Herschel observations shows that this approach gives robust results for even the faintest sources (S-250 similar to 10 mJy). We apply our new technique to HerMES SPIRE observations taken as part of the science demonstration phase of Herschel. For our real SPIRE observations, we show that, for bright unconfused sources, our flux density estimates are in good agreement with those produced via more traditional point source detection methods (SUSSEXtractor) by Smith et al. When compared to the measured number density of sources in the SPIRE bands, we show that our method allows the recovery of a larger fraction of faint sources than these traditional methods. However, this completeness is heavily dependent on the relative depth of the existing 24-mu m catalogues and SPIRE imaging. Using our deepest multiwavelength data set in the GOODS-N, we estimate that the use of shallow 24-mu m catalogues in our other fields introduces an incompleteness at faint levels of between 20-40 per cent at 250 mu m.
Astronomy and Astrophysics | 2013
S. Berta; D. Lutz; P. Santini; Stijn Wuyts; D. Rosario; D. Brisbin; A. Cooray; A. Franceschini; C. Gruppioni; E. Hatziminaoglou; Ho Seong Hwang; B. Magnelli; R. Nordon; S. J. Oliver; M. J. Page; P. Popesso; L. Pozzetti; F. Pozzi; L. Riguccini; G. Rodighiero; I. G. Roseboom; D. Scott; M. Symeonidis; I. Valtchanov; M. Viero; L. Wang
Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8–500 μm spectral energy distributions (SEDs) of galaxies with at least 7–10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6–9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10–20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of SED templates. Finally, the library is used to classify 24 μm detected sources in PEP GOODS fields on the basis of AGN content, L(60)/L(100) color and L(160)/L(1.6) luminosity ratio. AGN appear to be distributed in the stellar mass (M_∗) vs. star formation rate (SFR) space along with all other galaxies, regardless of the amount of infrared luminosity they are powering, with the tendency to lie on the high SFR side of the “main sequence”. The incidence of warmer star-forming sources grows for objects with higher specific star formation rates (sSFR), and they tend to populate the “off-sequence” region of the M_∗ − SFR − z space.
Astronomy and Astrophysics | 2010
P. Santini; R. Maiolino; B. Magnelli; L. Silva; A. Grazian; B. Altieri; P. Andreani; H. Aussel; S. Berta; A. Bongiovanni; D. Brisbin; F. Calura; A. Cava; J. Cepa; A. Cimatti; E. Daddi; H. Dannerbauer; H. Dominguez-Sanchez; D. Elbaz; A. Fontana; N. M. Förster Schreiber; R. Genzel; Gian Luigi Granato; C. Gruppioni; D. Lutz; G. Magdis; M. Magliocchetti; Francesca Matteucci; R. Nordon; I. Pérez Garcia
We use deep observations taken with the Photodetector Array Camera and Spectrometer (PACS), on board the Herschel satellite as part of the PACS evolutionary probe (PEP) guaranteed project along with submm ground-based observations to measure the dust mass of a sample of high-z submillimeter galaxies (SMGs). We investigate their dust content relative to their stellar and gas masses, and compare them with local star-forming galaxies. High-z SMGs are dust rich, i.e. they have higher dust-to-stellar mass ratios compared to local spiral galaxies (by a factor of 30) and also compared to local ultraluminous infrared galaxies (ULIRGs, by a factor of 6). This indicates that the large masses of gas typically hosted in SMGs have already been highly enriched with metals and dust. Indeed, for those SMGs whose gas mass is measured, we infer dust-to-gas ratios similar or higher than local spirals and ULIRGs. However, similarly to other strongly star-forming galaxies in the local Universe and at high-z ,S MGs are characterized by gas metalicities lower (by a factor of a few) than local spirals, as inferred from their optical nebular lines, which are generally ascribed to infall of metal-poor gas. This is in contrast with the large dust content inferred from the far-IR and submm data. In short, the metalicity inferred from the dust mass is much higher (by more than an order of magnitude) than that inferred from the optical nebular lines. We discuss the possible explanations of this discrepancy and the possible implications for the investigation of the metalicity evolution at high-z.
Astronomy and Astrophysics | 2010
B. M. Swinyard; Peter A. R. Ade; J.-P. Baluteau; H. Aussel; M. J. Barlow; G. J. Bendo; Dominique Benielli; J. J. Bock; D. Brisbin; A. Conley; L. Conversi; A. Dowell; Darren Dowell; Marc Ferlet; T. Fulton; J. Glenn; Adrian M. Glauser; D. Griffin; Matthew Joseph Griffin; S. Guest; P. Imhof; Kate Gudrun Isaak; S. C. Jones; K. King; S. J. Leeks; L. Levenson; Tanya Lim; N. Lu; Gibion Makiwa; David A. Naylor
SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory’s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194−671 μm (447−1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the “standard” pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards.
Monthly Notices of the Royal Astronomical Society | 2012
A. J. Smith; L. Wang; Seb Oliver; Robbie Richard Auld; J. J. Bock; D. Brisbin; D. Burgarella; P. Chanial; Edward L. Chapin; D. L. Clements; L. Conversi; A. Cooray; C. D. Dowell; Stephen Anthony Eales; D. Farrah; A. Franceschini; J. Glenn; Matthew Joseph Griffin; R. J. Ivison; A. M. J. Mortier; Mat Page; Andreas Papageorgiou; C. P. Pearson; I. Perez-Fournon; Michael Pohlen; J. I. Rawlings; Gwenifer Raymond; G. Rodighiero; I. G. Roseboom; M. Rowan-Robinson
We describe the generation of single-band point source catalogues from submillimetre Herschel-SPIRE observations taken as part of the Science Demonstration Phase of the Herschel Multi-tiered Extragalactic Survey (HerMES). Flux densities are found by means of peak finding and the fitting of a Gaussian point-response function. With highly confused images, careful checks must be made on the completeness and flux-density accuracy of the detected sources. This is done by injecting artificial sources into the images and analysing the resulting catalogues. Measured flux densities at which 50 per cent of injected sources result in good detections at (250, 350 and 500) mu m range from (11.6, 13.2 and 13.1) to (25.7, 27.1 and 35.8) mJy, depending on the depth of the observation (where a good detection is taken to be one with positional offset less than one full-width half-maximum of the point-response function, and with the measured flux density within a factor of 2 of the flux density of the injected source). This paper acts as a reference for the 2010 July HerMES public data release.
The Astrophysical Journal | 2011
A. Conley; A. Cooray; J. D. Vieira; E. A. González Solares; S. Kim; James E. Aguirre; A. Amblard; Robbie Richard Auld; A. J. Baker; A. Beelen; A. W. Blain; R. Blundell; James J. Bock; C. M. Bradford; C. Bridge; D. Brisbin; D. Burgarella; John M. Carpenter; P. Chanial; Edward L. Chapin; N. Christopher; D. L. Clements; P. Cox; S. G. Djorgovski; C. D. Dowell; Stephen Anthony Eales; L. Earle; T. P. Ellsworth-Bowers; D. Farrah; A. Franceschini
We report the discovery of a bright (
Monthly Notices of the Royal Astronomical Society | 2010
S. C. Chapman; R. J. Ivison; I. G. Roseboom; Robbie Richard Auld; J. J. Bock; D. Brisbin; D. Burgarella; P. Chanial; D. L. Clements; A. Cooray; Stephen Anthony Eales; A. Franceschini; E. Giovannoli; J. Glenn; Matthew Joseph Griffin; A. M. J. Mortier; S. J. Oliver; A. Omont; Mat Page; Andreas Papageorgiou; C. P. Pearson; I. Perez-Fournon; Michael Pohlen; J. I. Rawlings; Gwenifer Raymond; G. Rodighiero; M. Rowan-Robinson; D. Scott; N. Seymour; A. J. Smith
f(250\mum) > 400
Monthly Notices of the Royal Astronomical Society | 2012
I. G. Roseboom; R. J. Ivison; T. R. Greve; A. Amblard; V. Arumugam; Robbie Richard Auld; H. Aussel; M. Béthermin; A. W. Blain; James J. Bock; A. Boselli; D. Brisbin; V. Buat; D. Burgarella; N. Castro-Rodriguez; A. Cava; P. Chanial; Edward L. Chapin; S. C. Chapman; D. L. Clements; A. Conley; L. Conversi; A. Cooray; C. D. Dowell; James Dunlop; E. Dwek; Stephen Anthony Eales; David Elbaz; D. Farrah; A. Franceschini
mJy), multiply-lensed submillimeter galaxy \obj\ in {\it Herschel}/SPIRE Science Demonstration Phase data from the HerMES project. Interferometric 880\mum\ Submillimeter Array observations resolve at least four images with a large separation of