Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where D. C. Larbalestier is active.

Publication


Featured researches published by D. C. Larbalestier.


Nature | 2001

High-Tc superconducting materials for electric power applications.

D. C. Larbalestier; A. Gurevich; D. Matthew Feldmann; A. Polyanskii

Large-scale superconducting electric devices for power industry depend critically on wires with high critical current densities at temperatures where cryogenic losses are tolerable. This restricts choice to two high-temperature cuprate superconductors, (Bi,Pb)2Sr2Ca2Cu3Ox and YBa2Cu3Ox, and possibly to MgB2, recently discovered to superconduct at 39 K. Crystal structure and material anisotropy place fundamental restrictions on their properties, especially in polycrystalline form. So far, power applications have followed a largely empirical, twin-track approach of conductor development and construction of prototype devices. The feasibility of superconducting power cables, magnetic energy-storage devices, transformers, fault current limiters and motors, largely using (Bi,Pb)2Sr2Ca2Cu3Ox conductor, is proven. Widespread applications now depend significantly on cost-effective resolution of fundamental materials and fabrication issues, which control the production of low-cost, high-performance conductors of these remarkable compounds.


Nature | 2001

Strongly linked current flow in polycrystalline forms of the superconductor MgB2.

D. C. Larbalestier; L. D. Cooley; M.O. Rikel; A. Polyanskii; Jiming Jiang; S. Patnaik; X. Y. Cai; D.M. Feldmann; A. Gurevich; A. A. Squitieri; M. T. Naus; Chang-Beom Eom; E. E. Hellstrom; R. J. Cava; K. A. Regan; N. Rogado; M. A. Hayward; T. He; Joanna Slusky; P. Khalifah; K. Inumaru; M. Haas

The discovery of superconductivity at 39 K in magnesium diboride, MgB2, raises many issues, a critical one being whether this material resembles a high-temperature copper oxide superconductor or a low-temperature metallic superconductor in terms of its behaviour in strong magnetic fields. Although the copper oxides exhibit very high transition temperatures, their in-field performance is compromized by their large anisotropy, the result of which is to restrict high bulk current densities to a region much less than the full magnetic-field–temperature (H–T) space over which superconductivity is found. Moreover, the weak coupling across grain boundaries makes transport current densities in untextured polycrystalline samples low and strongly sensitive to magnetic field. Here we report that, despite the multiphase, untextured, microscale, subdivided nature of our MgB2 samples, supercurrents flow throughout the material without exhibiting strong sensitivity to weak magnetic fields. Our combined magnetization, magneto-optical, microscopy and X-ray investigations show that the supercurrent density is mostly determined by flux pinning, rather than by the grain boundary connectivity. Our results therefore suggest that this new superconductor class is not compromized by weak-link problems, a conclusion of significance for practical applications if higher temperature analogues of this compound can be discovered.


arXiv: Superconductivity | 2001

Thin Film Magnesium Boride Superconductor with Very High Critical Current Density and Enhanced Irreversibility Field

Chang-Beom Eom; M. K. Lee; J. Choi; L. Belenky; Xueyan Song; L. D. Cooley; M. T. Naus; S. Patnaik; Jiming Jiang; M.O. Rikel; A. Polyanskii; A. Gurevich; X. Y. Cai; Sang Don Bu; S.E. Babcock; E. E. Hellstrom; D. C. Larbalestier; N. Rogado; K. A. Regan; M. A. Hayward; T. He; Joanna Slusky; K. Inumaru; M. K. Haas; R. J. Cava

Larbalestier †§ N. Rogado*, K.A. Regan*, M.A. Hayward*, T. He*, J.S. Slusky*, K. Inumaru*, M.K. Haas* and R.J. Cava* † Department of Materials Science and Engineering, Univer-sity of Wisconsin, 1509 University Avenue, Madison, WI 53706 USA § Applied Superconductivity Center, University of Wisconsin, 1500 Engineering Drive, Madison, WI 53706 USA * Department of Chemistry and Princeton Materials Institute, Princeton University, Princeton, NJ 08544 USA


Nature | 2008

Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields.

F. Hunte; J. Jaroszynski; A. Gurevich; D. C. Larbalestier; R. Jin; Athena S. Sefat; Michael A. McGuire; Brian C. Sales; D. K. Christen; D. Mandrus

The recent synthesis of the superconductor LaFeAsO0.89F0.11 with transition temperature Tc ≈ 26 K (refs 1–4) has been quickly followed by reports of even higher transition temperatures in related compounds: 41 K in CeFeAsO0.84F0.16 (ref. 5), 43 K in SmFeAsO0.9F0.1 (ref. 6), and 52 K in NdFeAsO0.89F0.11 and PrFeAsO0.89F0.11 (refs 7, 8). These discoveries have generated much interest in the mechanisms and manifestations of unconventional superconductivity in the family of doped quaternary layered oxypnictides LnOTMPn (Ln: La, Pr, Ce, Sm; TM: Mn, Fe, Co, Ni; Pn: P, As), because many features of these materials set them apart from other known superconductors. Here we report resistance measurements of LaFeAsO0.89F0.11 at high magnetic fields, up to 45 T, that show a remarkable enhancement of the upper critical field Bc2 compared to values expected from the slopes dBc2/dT ≈ 2 T K-1 near Tc, particularly at low temperatures where the deduced Bc2(0) ≈ 63–65 T exceeds the paramagnetic limit. We argue that oxypnictides represent a new class of high-field superconductors with Bc2 values surpassing those of Nb3Sn, MgB2 and the Chevrel phases, and perhaps exceeding the 100 T magnetic field benchmark of the high-Tc copper oxides.


Nature | 2008

Very High Field Two-Band Superconductivity in LaFeAsO_0.89F_0.11

F. Hunte; J. Jaroszynski; A. Gurevich; D. C. Larbalestier; R. Jin; Athena S. Sefat; Michael A. McGuire; Brian C. Sales; D. K. Christen; D. Mandrus

The recent synthesis of the superconductor LaFeAsO0.89F0.11 with transition temperature Tc ≈ 26 K (refs 1–4) has been quickly followed by reports of even higher transition temperatures in related compounds: 41 K in CeFeAsO0.84F0.16 (ref. 5), 43 K in SmFeAsO0.9F0.1 (ref. 6), and 52 K in NdFeAsO0.89F0.11 and PrFeAsO0.89F0.11 (refs 7, 8). These discoveries have generated much interest in the mechanisms and manifestations of unconventional superconductivity in the family of doped quaternary layered oxypnictides LnOTMPn (Ln: La, Pr, Ce, Sm; TM: Mn, Fe, Co, Ni; Pn: P, As), because many features of these materials set them apart from other known superconductors. Here we report resistance measurements of LaFeAsO0.89F0.11 at high magnetic fields, up to 45 T, that show a remarkable enhancement of the upper critical field Bc2 compared to values expected from the slopes dBc2/dT ≈ 2 T K-1 near Tc, particularly at low temperatures where the deduced Bc2(0) ≈ 63–65 T exceeds the paramagnetic limit. We argue that oxypnictides represent a new class of high-field superconductors with Bc2 values surpassing those of Nb3Sn, MgB2 and the Chevrel phases, and perhaps exceeding the 100 T magnetic field benchmark of the high-Tc copper oxides.


Applied Physics Letters | 2009

Small anisotropy, weak thermal fluctuations, and high field superconductivity in Co-doped iron pnictide Ba(Fe1−xCox)2As2

A. Yamamoto; J. Jaroszynski; C. Tarantini; L. Balicas; J. Jiang; A. Gurevich; D. C. Larbalestier; Rongying Jin; Athena S. Sefat; Michael A. McGuire; Brian C. Sales; D. K. Christen; David Mandrus

We performed high-field magnetotransport and magnetization measurements on a single crystal of the 122-phase iron pnictide Ba(Fe1−xCox)2As2. Unlike the high-temperature superconductor cuprates and 1111-phase oxypnictides, Ba(Fe1−xCox)2As2 showed practically no broadening of the resistive transitions under magnetic fields up to 45 T. We report the temperature dependencies of the upper critical field Hc2 both parallel and perpendicular to the c-axis, the irreversibility field Hirrc(T), and a rather unusual symmetric volume pinning force curve Fp(H) suggestive of a strong pinning nanostructure. The anisotropy parameter γ=Hc2ab/Hc2c deduced from the slopes of dHc2ab/dT=4.9 T/K and dHc2c/dT=2.5 T/K decreases from ∼2 near Tc, to ∼1.5 at lower temperatures, much smaller than γ for 1111pnictides and high-Tc cuprates.


Superconductor Science and Technology | 2004

Very high upper critical fields in MgB2 produced by selective tuning of impurity scattering

A. Gurevich; S. Patnaik; Valeria Braccini; K H Kim; C. H. Mielke; Xueyan Song; L. D. Cooley; Sang Don Bu; D. M. Kim; J. Choi; Land J. Belenky; J. E. Giencke; M. K. Lee; Wei-Cheng Tian; X. Q. Pan; A Siri; E. E. Hellstrom; Chang-Beom Eom; D. C. Larbalestier

We report a significant enhancement of the upper critical field Hc2 of different MgB2 samples alloyed with nonmagnetic impurities. By studying films and bulk polycrystals with different resistivities ρ ,w e sho wac lear trend of a ni ncrease in Hc2 as ρ increases. One particular high resistivity film had a zero-temperature Hc2(0) well above the Hc2 values of competing non-cuprate superconductors such as Nb3Sn and Nb–Ti. Our high-field transport measurements give record values H ⊥ c2 (0) ≈ 34 T and H || c2 (0) ≈ 49 T for high resistivity films and Hc2(0) ≈ 29 T for untextured bulk polycrystals. The highest Hc2 film also exhibits a significant upward curvature of Hc2(T ) and a temperature dependence of the anisotropy parameter γ( T ) = H || c2 /H ⊥ c2 opposite to that of single crystals: γ( T ) decreases as the temperature decreases, from γ( Tc) ≈ 2t o γ( 0) ≈ 1.5. This remarkable Hc2 enhancement and its anomalous temperature dependence are a consequence of the two-gap superconductivity in MgB2 ,w hich offers special opportunities for further Hc2 increases by tuning of the impurity scattering by selective alloying on Mg and B sites. Our experimental results can be explained by a theory of two-gap superconductivity in the dirty limit. The very high values of Hc2(T ) observed suggest that MgB2 can be made into a versatile, competitive high-field superconductor.


Applied Physics Letters | 2002

High critical current density and improved irreversibility field in bulk MgB2 made by a scaleable, nanoparticle addition route

Jun Wang; Y. Bugoslavsky; A. Berenov; L. Cowey; A.D. Caplin; L. F. Cohen; J.L Macmanus Driscoll; L. D. Cooley; Xueyan Song; D. C. Larbalestier

Bulk samples of MgB2 were prepared with 5, 10, and 15 wt % Y2O3 nanoparticles, added using a simple solid-state reaction route. Transmission electron microscopy showed a fine nanostructure consisting of ∼3–5 nm YB4 nanoparticles embedded within MgB2 grains of ∼400 nm size. Compared to an undoped control sample, an improvement in the in-field critical current density JC was observed, most notably for 10% doping. At 4.2 K, the lower bound JC value was ∼2×105 A cm−2 at 2 T. At 20 K, the corresponding value was ∼8×104 A cm−2. Irreversibility fields were 11.5 T at 4.2 K and 5.5 T at 20 K.


Physical Review B | 2005

High-field superconductivity in alloyed MgB 2 thin films

V. Braccini; A. Gurevich; J. E. Giencke; M. C. Jewell; C. B. Eom; D. C. Larbalestier; A. V. Pogrebnyakov; Y. Cui; Bangzhi Liu; Y. F. Hu; Joan M. Redwing; Qi Li; X. X. Xi; R. K. Singh; R. Gandikota; J. Kim; B. J. Wilkens; N. Newman; J. Rowell; B. Moeckly; V. Ferrando; C. Tarantini; D. Marré; M. Putti; C. Ferdeghini; R. Vaglio; E. Haanappel

We investigated the effect of alloying on the upper critical field


Superconductor Science and Technology | 2010

New Fe-based superconductors: properties relevant for applications

M. Putti; I. Pallecchi; E. Bellingeri; M.R. Cimberle; M Tropeano; C. Ferdeghini; A. Palenzona; C. Tarantini; Akiyasu Yamamoto; J. Jiang; J. Jaroszynski; F Kametani; D Abraimov; A. Polyanskii; J. D. Weiss; E. E. Hellstrom; A. Gurevich; D. C. Larbalestier; Rongying Jin; Brian C. Sales; Athena S. Sefat; Michael A. McGuire; David Mandrus; Peng Cheng; Ying Jia; H. H. Wen; S. Lee; Chang-Beom Eom

H_{c2}

Collaboration


Dive into the D. C. Larbalestier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. J. Lee

Florida State University

View shared research outputs
Top Co-Authors

Avatar

A. Gurevich

Old Dominion University

View shared research outputs
Top Co-Authors

Avatar

J. Jiang

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

A. Polyanskii

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

C. Tarantini

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F Kametani

Florida State University

View shared research outputs
Top Co-Authors

Avatar

J. Jaroszynski

Florida State University

View shared research outputs
Top Co-Authors

Avatar

X.Y. Cai

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge